首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously proposed the defensive role of a signal pathway triggered by the polyamine spermine (Spm) in the reaction against avirulent viral pathogens in Nicotiana tabacum and Arabidopsis thaliana. In this study, we showed that thermospermine (T-Spm), an isomer of Spm, is also active in inducing the expression of the genes involved in the Spm-signal pathway at a similar dose as Spm. Furthermore, we found that T-Spm enhances the expression of a subset of pathogenesis-related genes whose expression is induced during cucumber mosaic virus (CMV)-triggered hypersensitive response. In consistent with the above observation, we further showed that exogenous T-Spm can repress CMV multiplication with same efficiency as Spm. KEY MESSAGE: Polyamine thermospermine, an isomer of spermine, is able to induce a subset of hypersensitive response-related defense genes and can suppress cucumber mosaic virus multiplication in Arabidopsis thaliana.  相似文献   

2.

Key message

Oryza sativa polyamine oxidase 1 back-converts spermine (or thermospermine) to spermidine. Considering the previous work, major path of polyamine catabolism in rice plant is suggestive to be back-conversion but not terminal catabolism.

Abstract

Rice (Oryza sativa) contains seven genes encoding polyamine oxidases (PAOs), termed OsPAO1 to OsPAO7, based on their chromosomal number and gene ID number. We previously showed that three of these members, OsPAO3, OsPAO4 and OsPAO5, are abundantly expressed, that their products localize to peroxisomes and that they catalyze the polyamine back-conversion reaction. Here, we have focused on OsPAO1. The OsPAO1 gene product shares a high level of identity with those of Arabidopsis PAO5 and Brassica juncea PAO. Expression of OsPAO1 appears to be quite low under physiological conditions, but is markedly induced in rice roots by spermine (Spm) or T-Spm treatment. Consistent with the above finding, the recombinant OsPAO1 prefers T-Spm as a substrate at pH 6.0 and Spm at pH 8.5 and, in both cases, back-converts these tetraamines to spermidine, but not to putrescine. OsPAO1 localizes to the cytoplasm of onion epidermal cells. Differing in subcellular localization, four out of seven rice PAOs, OsPAO1, OsPAO3, OsPAO4 and OsPAO5, catalyze back-conversion reactions of PAs. Based on the results, we discuss the catabolic path(s) of PAs in rice plant.  相似文献   

3.
The major plant polyamines (PAs) are the tetraamines spermine (Spm) and thermospermine (T-Spm), the triamine spermidine, and the diamine putrescine. PA homeostasis is governed by the balance between biosynthesis and catabolism; the latter is catalyzed by polyamine oxidase (PAO). Arabidopsis (Arabidopsis thaliana) has five PAO genes, AtPAO1 to AtPAO5, and all encoded proteins have been biochemically characterized. All AtPAO enzymes function in the back-conversion of tetraamine to triamine and/or triamine to diamine, albeit with different PA specificities. Here, we demonstrate that AtPAO5 loss-of-function mutants (pao5) contain 2-fold higher T-Spm levels and exhibit delayed transition from vegetative to reproductive growth compared with that of wild-type plants. Although the wild type and pao5 are indistinguishable at the early seedling stage, externally supplied low-dose T-Spm, but not other PAs, inhibits aerial growth of pao5 mutants in a dose-dependent manner. Introduction of wild-type AtPAO5 into pao5 mutants rescues growth and reduces the T-Spm content, demonstrating that AtPAO5 is a T-Spm oxidase. Recombinant AtPAO5 catalyzes the conversion of T-Spm and Spm to triamine spermidine in vitro. AtPAO5 specificity for T-Spm in planta may be explained by coexpression with T-Spm synthase but not with Spm synthase. The pao5 mutant lacking T-Spm oxidation and the acl5 mutant lacking T-Spm synthesis both exhibit growth defects. This study indicates a crucial role for T-Spm in plant growth and development.Polyamines (PAs) are low-molecular mass aliphatic amines that are present in almost all living organisms. Cellular PA concentrations are governed primarily by the balance between biosynthesis and catabolism. In plants, the major PAs are the diamine putrescine (Put), the triamine spermidine (Spd), and the tetraamines spermine (Spm) and thermospermine (T-Spm; Kusano et al., 2008; Alcázar et al., 2010; Mattoo et al., 2010; Takahashi and Kakehi, 2010; Tiburcio et al., 2014). Put is synthesized from Orn by Orn decarboxylase and/or from Arg by three sequential reactions catalyzed by Arg decarboxylase (ADC), agmatine iminohydrolase, and N-carbamoylputrescine amidohydrolase. Arabidopsis (Arabidopsis thaliana) does not contain an ORNITHINE DECARBOXYLASE gene (Hanfrey et al., 2001) and synthesizes Put from Arg via the ADC pathway. Put is further converted to Spd via an aminopropyltransferase reaction catalyzed by spermidine synthase (SPDS). In this reaction, an aminopropyl residue is transferred to Put from decarboxylated S-adenosyl-Met, which is synthesized by S-adenosyl-Met decarboxylase (SAMDC; Kusano et al., 2008). Spd is then converted to Spm or T-Spm, reactions catalyzed in Arabidopsis by spermine synthase (SPMS; encoded by SPMS) or thermospermine synthase (encoded by Acaulis5 [ACL5]), respectively (Hanzawa et al., 2000; Knott et al., 2007; Kakehi et al., 2008; Naka et al., 2010). A recent review reports that T-Spm is ubiquitously present in the plant kingdom (Takano et al., 2012).The PA catabolic pathway has been extensively studied in mammals. Spm and Spd acetylation by Spd/Spm-N1-acetyltransferase (Enzyme Commission no. 2.3.1.57) precedes the catabolism of PAs and is a rate-limiting step in the catabolic pathway (Wallace et al., 2003). A mammalian polyamine oxidase (PAO), which requires FAD as a cofactor, oxidizes N1-acetyl Spm and N1-acetyl Spd at the carbon on the exo-side of the N4-nitrogen to produce Spd and Put, respectively (Wang et al., 2001; Vujcic et al., 2003; Wu et al., 2003; Cona et al., 2006). Mammalian spermine oxidases (SMOs) perform oxidation of the carbon on the exo-side of the N4-nitrogen to produce Spd, 3-aminopropanal, and hydrogen peroxide (Vujcic et al., 2002; Cervelli et al., 2003; Wang et al., 2003). Thus, mammalian PAOs and SMOs are classified as back-conversion (BC)-type PAOs.In plants, Spm, T-Spm, and Spd are catabolized by PAO. Plant PAOs derived from maize (Zea mays) and barley (Hordeum vulgare) catalyze terminal catabolism (TC)-type reactions (Tavladoraki et al., 1998). TC-type PAOs oxidize the carbon at the endo-side of the N4-nitrogen of Spm and Spd to produce N-(3-aminopropyl)-4-aminobutanal and 4-aminobutanal, respectively, plus 1,3-diaminopropane and hydrogen peroxide (Cona et al., 2006; Angelini et al., 2008, 2010). The Arabidopsis genome contains five PAO genes, designated as AtPAO1 to AtPAO5. Four recombinant AtPAOs, AtPAO1 to AtPAO4, have been homogenously purified and characterized (Tavladoraki et al., 2006; Kamada-Nobusada et al., 2008; Moschou et al., 2008; Takahashi et al., 2010; Fincato et al., 2011, 2012). AtPAO1 to AtPAO4 possess activities that convert Spm (or T-Spm) to Spd, called partial BC, or they convert Spm (or T-Spm) first to Spd and subsequently to Put, called full BC. Ahou et al. (2014) report that recombinant AtPAO5 also catalyzes a BC-type reaction. Therefore, all Arabidopsis PAOs are BC-type enzymes (Kamada-Nobusada et al., 2008; Moschou et al., 2008; Takahashi et al., 2010; Fincato et al., 2011, 2012; Ahou et al., 2014). Four of the seven PAOs in rice (Oryza sativa; OsPAO1, OsPAO3, OsPAO4, and OsPAO5) catalyze BC-type reactions (Ono et al., 2012; Liu et al., 2014a), whereas OsPAO7 catalyzes a TC-type reaction (Liu et al., 2014b). OsPAO2 and OsPAO6 remain to be characterized, but may catalyze TC-type reactions based on their structural similarity with OsPAO7. Therefore, plants possess both TC-type and BC-type PAOs.PAs are involved in plant growth and development. Recent molecular genetic analyses in Arabidopsis indicate that metabolic blocks at the ADC, SPDS, or SAMDC steps lead to embryo lethality (Imai et al., 2004; Urano et al., 2005; Ge et al., 2006). Potato (Solanum tuberosum) plants with suppressed SAMDC expression display abnormal phenotypes (Kumar et al., 1996). It was also reported that hydrogen peroxide derived from PA catabolism affects root development and xylem differentiation (Tisi et al., 2011). These studies indicate that flux through metabolic and catabolic PA pathways is required for growth and development. The Arabidopsis acl5 mutant, which lacks T-Spm synthase activity, displays excessive differentiation of xylem tissues and a dwarf phenotype, especially in stems (Hanzawa et al., 2000; Kakehi et al., 2008, 2010). An allelic ACL5 mutant (thickvein [tkv]) exhibits a similar phenotype as that of acl5 (Clay and Nelson, 2005). These results indicate that T-Spm plays an important role in Arabidopsis xylem differentiation (Vera-Sirera et al., 2010; Takano et al., 2012).Here, we demonstrate that Arabidopsis pao5 mutants contain 2-fold higher T-Spm levels and exhibit aerial tissue growth retardation approximately 50 d after sowing compared with that of wild-type plants. Growth inhibition of pao5 stems and leaves at an early stage of development is induced by growth on media containing low T-Spm concentrations. Complementation of pao5 with AtPAO5 rescues T-Spm-induced growth inhibition. We confirm that recombinant AtPAO5 catalyzes BC of T-Spm (or Spm) to Spd. Our data strongly suggest that endogenous T-Spm levels in Arabidopsis are fine tuned, and that AtPAO5 regulates T-Spm homeostasis through a T-Spm oxidation pathway.  相似文献   

4.

Key message

Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine.

Abstract

Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.
  相似文献   

5.
6.
7.
8.
9.
10.

Key message

Overexpression of a cotton defense-related gene GbSTK in Arabidopsis resulted in enhancing pathogen infection and oxidative stress by activating multiple defense-signaling pathways.

Abstract

Serine/threonine protein kinase (STK) plays an important role in the plant stress-signaling transduction pathway via phosphorylation. Most studies about STK genes have been conducted with model species. However, their molecular and biochemical characterizations have not been thoroughly investigated in cotton. Here, we focused on one such member, GbSTK. RT-PCR indicated that it is induced not only by Verticillium dahliae Kleb., but also by signaling molecules. Subcellular localization showed that GbSTK is present in the cell membrane, cytoplasm, and nucleus. Overexpression of GbSTK in Arabidopsis resulted into the enhanced resistance to V. dahliae. Moreover, Overexpression of GbSTK elevated the expression of PR4, PR5, and EREBP, conferring on transgenic plants enhanced reactive oxygen species scavenging capacity and oxidative stress tolerance. Our results suggest that GbSTK is active in multiple defense-signaling pathways, including those involved in responses to pathogen infection and oxidative stress.  相似文献   

11.

Background

As a chronic antigenic stressor human Cytomegalovirus (CMV) contributes substantially to age-related alterations of the immune system. Even though monocytes have the greatest propensity for CMV-infection and seem to be an important host for the virus during latency, fibroblasts are also discussed to be target cells of CMV in vivo. However, little is known so far about general immunoregulatory properties of CMV in fibroblasts. We therefore investigated the immunoregulatory effects of CMV-infection in human lung fibroblasts and the impact on replicative senescence.

Findings

We observed that CMV-infection led to the induction of several immunoregulatory host cell genes associated with the innate and adaptive immune system. These were genes of different function such as genes regulating apoptosis, cytokines/chemokines and genes that are responsible for the detection of pathogens. Some of the genes upregulated following CMV-infection are also upregulated during cellular senescence, indicating that CMV causes an immunological phenotype in fibroblasts, which is partially reminiscent of replicative senescent cells.

Conclusion

In summary our results demonstrate that CMV not only affects the T cell pool but also induces inflammatory processes in human fibroblasts.  相似文献   

12.
13.
14.
15.

Key message

A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway.

Abstract

A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants.  相似文献   

16.
17.
18.
  • 1.1. Polyamines were extracted from the guts and ovaries of the sea urchin Anthocidoris crassispina, and the guts and flesh of the sea cucumber Stichopus japonicus and the sea squirt Halocynthia roretzi, the oyster Crassostrea gigas and the short-necked clam Tapes philippinarum, and analyzed by ion-exchange high-performance liquid chromatography and gas chromatography-mass spectrometry.
  • 2.2. Norspermidine and norspermine as well as putrescine, cadaverine, spermidine, spermine and agmatine were the ubiquitous polyamines in these invertebrates. These results suggest the widespread distribution of norspermidine and norspermine in invertebrates.
  • 3.3. Thermopentamine, thermohexamine and homothermohexamine were found in the sea urchin. This in the first report on the occurence of thermopentamine and hexaamine in invertebrates.
  • 4.4. Homospermidine, canavalmine, aminopropylhomospermidine, homospermine, caldopentamine, homocaldopentamine and aminopropylcanavalmine were found in the sea cucumber. Homospermidine, aminopropylhomospermidine and homospermine were found in the squirt. This is the first report on the occurence of canavalmine, aminopropylhomospermidine, homospermine, homocaldopentamine and aminopropylcanavalmine in invertebrates.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号