首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of physico-chemical factors on percent coral cover and coral health was examined on a spatial basis for two dominant Acropora species, A. digitifera and A. spicifera, at Ningaloo Reef (north-western Australia) in the southeast Indian Ocean. Coral health was investigated by measuring metabolic indices (RNA/DNA ratio and protein concentration), energy levels (lipid ratio) and autotrophic indices (chlorophyll a (chl a) and zooxanthellae density) at six stations during typical seasons (austral autumn 2010 (March and April), austral winter 2010 (August)) and during an extreme La Niña event in summer 2011 (February). These indices were correlated with 15 physico-chemical factors (measured immediately following coral sampling) to identify predictors for health indices. Variations in metabolic indices (protein concentration and RNA/DNA ratio) for A. spicifera were mainly explained by nitrogen, temperature and zooplankton concentrations under typical conditions, while for A. digitifera, light as well as phytoplankton, in particular picoeukaryotes, were important, possibly due to higher energy requirement for lipid synthesis and storage in A. digitifera. Optimum metabolic values occurred for both Acropora species at 26–28°C when autotrophic indices (chl a and zooxanthellae density) were lowest. The extreme temperature during the La Niña event resulted in a shift of feeding modes, with an increased importance of water column plankton concentrations for metabolic rates of A. digitifera and light and plankton for A. spicifera. Our results suggest that impacts of high sea surface temperatures during extreme events such as La Niña may be mitigated via reduction on metabolic rates in coral host. The high water column plankton concentrations and associated low light levels resulted in a shift towards high symbiont densities, with lower metabolic rates and energy levels than the seasonal norm for the coral host.  相似文献   

2.
Seasonal differences in the timing of multi-specific coral spawning between the east and west coasts of Australia may be the result of a genetic legacy or of adaptation to local conditions. Using estimates of the proportions of coral species that spawned in spring and autumn at Ashmore Reef (12°S) and Ningaloo Reef (23°S) in Western Australia, in combination with findings of previous surveys, I examined whether reproductive seasonality varied with latitude. A consistently high proportion of species spawned during the main reproductive season in autumn regardless of latitude. However, there was a clear decrease in the proportion of species spawning in spring, from an average of 49 % at Ashmore Reef (12°S) to 7 % at Ningaloo Reef (23°S). The results of this study suggest that seasonality of coral reproduction in Western Australia reflects environmental gradients and natural selection rather than an inherited genetic legacy.  相似文献   

3.
Bacteria associated with three coral species, Acropora tenuis, Pocillopora damicornis and Tubastrea faulkneri, were assessed before and after coral mass spawning on Ningaloo Reef in Western Australia. Two colonies of each species were sampled before and after the mass spawning event and two additional samples were collected for P. damicornis after planulation. A variable 470 bp region of the 16 S rRNA gene was selected for pyrosequencing to provide an understanding of potential variations in coral-associated bacterial diversity and community structure. Bacterial diversity increased for all coral species after spawning as assessed by Chao1 diversity indicators. Minimal changes in community structure were observed at the class level and data at the taxonomical level of genus incorporated into a PCA analysis indicated that despite bacterial diversity increasing after spawning, coral-associated community structure did not shift greatly with samples grouped according to species. However, interesting changes could be detected from the dataset; for example, α-Proteobacteria increased in relative abundance after coral spawning and particularly the Roseobacter clade was found to be prominent in all coral species, indicating that this group may be important in coral reproduction.  相似文献   

4.
Coral-associated microbial communities from three coral species (Pocillopora damicornis, Acropora tenuis and Favites abdita) were examined every 3 months (January, March, June, October) over a period of 1 year on Ningaloo Reef, Western Australia. Tissue from corals was collected throughout the year and additional sampling of coral mucus and seawater samples was performed in January. Tissue samples were also obtained in October from P. damicornis coral colonies on Rottnest Island off Perth, 1200 km south of Ningaloo Reef, to provide comparisons between coral-microbial associates in different locations. The community structures of the coral-associated microorganisms were analysed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse microbial profiles among all the coral species sampled. Principal component analysis revealed that samples grouped according to time and not species, indicating that coral-microbial associations may be a result of environmental drivers such as oceanographic characteristics, benthic community structure and temperature. Tissue samples from P. damicornis at Rottnest Island revealed similarities in bacteria to the samples at Ningaloo Reef. This study highlights that coral-associated microbial communities are highly diverse; however, the complex interactions that determine the stability of these associations are not necessarily dependent on coral host specificity.  相似文献   

5.
Most coral species off Australia??s west coast spawn in the austral autumn (March?CApril), with a few species also spawning in the southern spring or early summer (November?CDecember). This is the reverse timing to spawning recorded off Australia??s east coast. Porites lutea, a gonochoric broadcast spawner that is common on Australia??s west coast, is shown here to spawn in the months of November or December, as it does on Australia??s east coast. Spawning occurred between 2 and 5 nights after full moon, with the majority of spawning activity on night 3. Gametes developed over three to four months with rapid development in the last two weeks before spawning. Zooxanthellae were typically observed in mature oocytes, only a week before spawning so their presence may provide a useful indicator of imminent spawning.  相似文献   

6.
To explore how microbial community composition and function varies within a coral reef ecosystem, we performed metagenomic sequencing of seawater from four niches across Heron Island Reef, within the Great Barrier Reef. Metagenomes were sequenced from seawater samples associated with (1) the surface of the coral species Acropora palifera, (2) the surface of the coral species Acropora aspera, (3) the sandy substrate within the reef lagoon and (4) open water, outside of the reef crest. Microbial composition and metabolic function differed substantially between the four niches. The taxonomic profile showed a clear shift from an oligotroph-dominated community (e.g. SAR11, Prochlorococcus, Synechococcus) in the open water and sandy substrate niches, to a community characterised by an increased frequency of copiotrophic bacteria (e.g. Vibrio, Pseudoalteromonas, Alteromonas) in the coral seawater niches. The metabolic potential of the four microbial assemblages also displayed significant differences, with the open water and sandy substrate niches dominated by genes associated with core house-keeping processes such as amino acid, carbohydrate and protein metabolism as well as DNA and RNA synthesis and metabolism. In contrast, the coral surface seawater metagenomes had an enhanced frequency of genes associated with dynamic processes including motility and chemotaxis, regulation and cell signalling. These findings demonstrate that the composition and function of microbial communities are highly variable between niches within coral reef ecosystems and that coral reefs host heterogeneous microbial communities that are likely shaped by habitat structure, presence of animal hosts and local biogeochemical conditions.  相似文献   

7.
Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast) and Ningaloo Reef (western coast). The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.  相似文献   

8.
Corals exhibit circadian behaviors, but little is known about the molecular mechanisms underlying the regulation of these behaviors. We surveyed the recently decoded genome of the coral, Acropora digitifera, for photoreceptor and circadian genes, using molecular phylogenetic analyses. Our search for photoreceptor genes yielded seven opsin and three cryptochrome genes. Two genes from each family likely underwent tandem duplication in the coral lineage. We also found the following A. digitifera orthologs to Drosophila and mammalian circadian clock genes: four clock, one bmal/cycle, three pdp1-like, one creb/atf, one sgg/zw3, two ck2alpha, one dco (csnk1d/cnsk1e), one slim/BTRC, and one grinl. No vrille, rev-ervα/nr1d1, bhlh2, vpac2, adcyap1, or adcyaplr1 orthologs were found. Intriguingly, in spite of an extensive survey, we also failed to find homologs of period and timeless, although we did find one timeout gene. In addition, the coral genes were compared to orthologous genes in the sea anemone, Nematostella vectensis. Thus, the coral and sea anemone genomes share a similar repertoire of circadian clock genes, although A. digitifera contains more clock genes and fewer photoreceptor genes than N. vectensis. This suggests that the circadian clock system was established in a common ancestor of corals and sea anemones, and was diversified by tandem gene duplications and the loss of paralogous genes in each lineage. It will be interesting to determine how the coral circadian clock functions without period.  相似文献   

9.
Recently, reef-building coral populations have been decreasing worldwide due to various disturbances. Population genetic studies are helpful for estimating the genetic connectivity among populations of marine sessile organisms with metapopulation structures such as corals. Moreover, the relationship between latitude and genetic diversity is informative when evaluating the fragility of populations. In this study, using highly variable markers, we examined the population genetics of the broadcast-spawning coral Acropora digitifera at 19 sites in seven regions along the 1,000 km long island chain of Nansei Islands, Japan. This area includes both subtropical and temperate habitats. Thus, the coral populations around the Nansei Islands in Japan are northern peripheral populations that would be subjected to environmental stresses different from those in tropical areas. The existence of high genetic connectivity across this large geographic area was suggested for all sites (F ST≤0.033) although small but significant genetic differentiation was detected among populations in geographically close sites and regions. In addition, A. digitifera appears to be distributed throughout the Nansei Islands without losing genetic diversity. Therefore, A. digitifera populations in the Nansei Islands may be able to recover relatively rapidly even when high disturbances of coral communities occur locally if populations on other reefs are properly maintained.  相似文献   

10.
On reefs around Australia, coral mass spawning typically occurs during the austral spring (October/November) on the east coast, and during autumn (March/April) on the west coast. However, to investigate the incidence of a secondary spawning event in spring on the west coast, the reproductive state of corals was assessed on two reefs. The results indicated that of the 29 species of Acropora investigated, multiple colonies of 11 species spawned in late spring or in early summer, in contrast to previous reports of spawning during autumn. Additionally, of four species that were followed through time at one reef, two spawned in both spring and autumn, however, individual colonies had only one gametogenic cycle. Within a single site, conspecific colonies were reproductively isolated and may not interbreed, potentially representing the initial stage of sympatric speciation in these populations.  相似文献   

11.
ABSTRACT

Coral populations continue to decline in many regions because of natural and anthropogenic disturbances; and the persistence of coral populations mainly relies on natural recruitment through coral reproduction. However, studies on the reproduction of many important reef-building coral species in one of the most biodiverse region, the Coral Triangle, are very limited. Here, we investigated the reproductive biology of the coral Acropora millepora in Bolinao-Anda Reef Complex, northwestern Philippines from February 2014 to March 2015, through in situ assessment of gamete maturity, histological examination of gamete development and ex situ spawning observations. Results showed that A. millepora exhibited an annual gametogenic cycle. Formation of oocytes took place within 8 months, whereas spermatocytes developed in 3 months before the gamete release. Abundance and size of eggs in A. millepora were greatest during the months nearest to the spawning period, which coincides with the rapid increase in sea surface temperature. Ex situ broadcast spawning occurred around the months of February–March, which suggests an extended spawning pattern. Results provide additional information on coral reproduction in the region and reveal the potential of A. millepora in providing coral propagules for the replenishment and recovery of degraded coral populations.  相似文献   

12.
Infections of Pseudomonas aeruginosa are of great concern because of its increasing resistance towards conventional antibiotics. Quorum sensing system of P. aeruginosa acts as a global regulator of almost all the virulence factors and majorly its biofilm formation. In the present study, quenching of QS system of P. aeruginosa has been explained with bioactives from bacteria associated with the coral Acropora digitifera. Isolated bioactives inhibited the expression of various virulence traits of P. aeruginosa like biofilm formation, and the production of extracellular enzymes like protease and elastase. This study also emphasises the potential of coral associated bacteria in producing bioactive agents with anti-pathogenic properties.  相似文献   

13.
Coral spawning on the oceanic reef systems of north-western Australia was recently discovered during autumn and spring, but the degree to which species and particularly colonies participated in one or both of these spawnings was unknown. At the largest of the oceanic reef systems, the participation by colonies in the two discrete spawning events was investigated over three years in 13 species of Acropora corals (n = 1,855 colonies). Seven species spawned during both seasons; five only in autumn and one only in spring. The majority of tagged colonies (n = 218) spawned once a year in the same season, but five colonies from three species spawned during spring and autumn during a single year. Reproductive seasonality was not influenced by spatial variation in habitat conditions, or by Symbiodinium partners in the biannual spawner Acropora tenuis. Colonies of A. tenuis spawning during different seasons separated into two distinct yet cryptic groups, in a bayesian clustering analysis based on multiple microsatellite markers. These groups were associated with a major genetic divergence (G”ST = 0.469), despite evidence of mixed ancestry in a small proportion of individuals. Our results confirm that temporal reproductive isolation is a common feature of Acropora populations at Scott Reef and indicate that spawning season is a genetically determined trait in at least A. tenuis. This reproductive isolation may be punctuated occasionally by interbreeding between genetic groups following favourable environmental conditions, when autumn spawners undergo a second annual gametogenic cycle and spawn during spring.  相似文献   

14.
15.
This study quantified how the pulse of organic matter from the release of coral gametes triggered a chain of pelagic and benthic processes during an annual mass spawning event on the Australian Great Barrier Reef. Particulate organic matter (POM) concentrations in reef waters increased by threefold to 11-fold the day after spawning and resulted in a stimulation of pelagic oxygen consumption rates that lasted for at least 1 week. Water column microbial communities degraded the organic carbon of gametes of the broadcast-spawning coral Acropora millepora at a rate of >15% h−1, which is about three times faster than the degradation rate measured for larvae of the brooding coral Stylophora pistillata. Stable isotope signatures of POM in the water column reflected the fast transfer of organic matter from coral gametes into higher levels of the food chain, and the amount of POM reaching the seafloor immediately increased after coral spawning and then tailed-off in the next 2 weeks. Short-lasting phytoplankton blooms developed within a few days after the spawning event, indicating a prompt recycling of nutrients released through the degradation of spawning products. These data show the profound effects of coral mass spawning on the reef community and demonstrate the tight recycling of nutrients in this oligotrophic ecosystem.  相似文献   

16.
Transplanted pieces of the coral Acropora palifera Lamarck simulating colonies 2–4 years old were adversely affected by dense algal-sediment mats developed in response to reduced grazing pressures within territories of the damselfish Dischistodus perspicillatus (Cuvier). Coral growth was initially prolonged in autumn, but was subsequently suppressed during winter and spring. There was heavy mortality only in mid-winter when corals died rapidly from the base. It is suggested that the algal mat caused the corals to expend energy to keep their surfaces clean, so that death followed the exhaustion of metabolic reserves during periods of minimum nutrient availability, and that the abundance of D. perspicillatus is sufficient to explain the paucity of small Acropora palifera colonies in an otherwise favourable habitat.  相似文献   

17.
Corals are sessile eukaryotic hosts which provide a unique surface for microbial colonization. Culture independent studies show that the coral mucus and tissue harbour diverse and abundant prokaryotic communities. However, little is known about the diversity of bacteria associated with the corals of Gulf of Mannar. The present study characterised the bacterial diversity associated with the mucus of the coral Acropora digitifera from the Gulf of Mannar by 16S rRNA gene clone library construction. The bacterial communities of the mucus of A. digitifera were diverse, with representatives within the Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes and several unclassified bacteria. The culture independent bacterial population was totally different from our previous culture dependent study of the mucus and tissue of the same coral. 36% of the bacteria in the clone library of A. digitifera were found to be novel after full length sequencing of the 16S rRNA gene wherein several clones were found to be novel at the Genus and species level. The current study further supports the findings that Actinobacteria amount to a certain proportion among bacterial communities associated with corals.  相似文献   

18.
Small groups of T. gigas and a single individual of T. derasa have been observed to spawn sperm in nature during the austral summer on the Great Barrier Reef. In T. gigas diel periodicity to the spawning generally coincided with incoming tides near second (full), third and fourth (new) quarters of the moon phase. Intense spawning ranged from 30 min to 2 1/2 h, with spawning contractions occurring every 2–3 min. Eggs were never observed being spawned in nature. A new technique, an egg catching device, was used for sampling eggs of T. gigas which were observed spawning sperm. Results indicated that the egg phase of spawning did not follow spawning of sperm. Some clams which do not respond to a spawning neighbour may be reproductively inactive. In 70% of observations of nearest spawning neighbours the clams were within 9 m of one another. A hypodermic extraction technique was used for clam gonadal material. Examination of tissue suggested a potential early to mid-austral summer spawning for T. gigas, and to a lesser degree for T. derasa.  相似文献   

19.
Coral biodiversity has recently been considered an important topic in environmental studies. Biodiversity could be preserved with successful cryopreservation of endangered species gametes or embryos. Herein, we developed cryopreservation protocols for Acropora digitifera sperm with use of sucrose and methanol based extender. We studied cryopreservation of A. digitifera sperm with floating frames, allowing the placement of 250 μl French straws 4 cm above the liquid nitrogen surface, resulting in a 40 °C/min freezing rate. This method enabled the successful cryopreservation of sperm in 0.9 M sucrose supplemented with 20% methanol. In this protocol, we used a 1:3 (sperm:extender) dilution ratio. The fertilization ratios of freezing:thawed sperm were similar to the control and reached 63%. This method might be a valuable option in the formation of A. digitifera gene banking. Further studies are needed to explore possibilities of using this method in cryopreservation of other coral’s sperm.  相似文献   

20.
Coral zooxanthellae contain high concentrations of dimethylsulphoniopropionate (DMSP), the precursor of dimethylsulphide (DMS), an aerosol substance that could affect cloud cover, solar radiation and ocean temperatures. Acropora intermedia a dominant staghorn coral in the Indo-Pacific region, contain some of the highest concentrations of DMSP reported in the literature but no studies have shown that corals produce atmospheric DMS in situ and thus could potentially participate in sea surface temperature (SST) regulation over reefs; or how production varies during coral bleaching. We show that A. intermedia from the Great Barrier Reef (GBR) produces significant amounts of atmospheric DMS, in chamber experiments, indicating that coral reefs in this region could contribute to an “ocean thermostat” similar to that described for the western Pacific warm pool, where significantly fewer coral reefs have bleached during the last 25?years because of a cloud-SST feedback. However, when Acropora intermedia was stressed with higher light levels and seawater temperatures DMSP production, an indicator of zooxanthellae expulsion, increased markedly in the chamber, whilst atmospheric DMS emissions almost completely shut down. These results suggest that during increased light levels and seawater temperatures in the GBR coral shut-down atmospheric DMS aerosol production, potentially increasing solar radiation levels over reefs and exacerbating coral bleaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号