首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Formins are highly conserved heterogeneous family of proteins with several isoforms having significant contribution in multiple cellular functions. Formins play crucial role in remodelling of actin cytoskeleton and thus play important role in cell motility. Formins are also involved in many cellular activities like determining cell polarity, cytokinesis and morphogenesis. Formins are multi domain protein with characteristic homodimeric formin homology 2 (FH2) domain. It nucleates the actin filaments and its activity is regulated by the presence of characteristic formin homology 1 (FH1) domain. In higher mammals like human and mouse fifteen different formin isoforms are present. However the function and expression pattern of each and every formin in different adult tissues are not well characterized. Here we have found that multiple formins are expressing in each adult tissue of mouse, irrespective of their origin from the germ layer. Formins are also expressing from early stage of development to the adulthood in brain. The expression of many formins in a single tissue of adult mouse indicates that regulation of actin cytoskeleton dynamics by formins may be crucial for physiological processes like wound healing, tissue repairing, exocytosis, endocytosis, synapse formation and maintenance. Expression of FMNL2 and Fhdc1 are high in adult mouse brain as compare to embryonic stages. Higher expression of FMNL2 and Fhdc1 indicates that FMNL2 and Fhdc1 might be very important for the adult brain functions.  相似文献   

2.
3.
4.
5.
Vékony N  Wolf S  Boissel JP  Gnauert K  Closs EI 《Biochemistry》2001,40(41):12387-12394
At least five distinct carrier proteins form the family of mammalian cationic amino acid transporters (CATs). We have cloned a cDNA containing the complete coding region of human CAT-3. hCAT-3 is glycosylated and localized to the plasma membrane. Transport studies in Xenopus laevis oocytes revealed that hCAT-3 is selective for cationic L-amino acids and exhibits a maximal transport activity similar to other CAT proteins. The apparent substrate affinity and sensitivity to trans-stimulation of hCAT-3 resembles most closely hCAT-2B. This is in contrast to rat and murine CAT-3 proteins that have been reported to display a very low activity and to be inhibited by neutral and anionic L-amino acids as well as D-arginine (Hosokawa, H., et al. (1997) J. Biol. Chem. 272, 8717-8722; Ito, K., and Groudine, M. (1997) J. Biol. Chem. 272, 26780-26786). Also, in adult rat and mouse, CAT-3 has been found exclusively in central neurons. Human CAT-3 expression is not restricted to the brain, in fact, by far the highest expression was found in thymus. Also in other peripheral tissues, hCAT-3 expression was equal to or higher than in most brain regions, suggesting that hCAT-3 is not a neuron-specific transporter.  相似文献   

6.
Three closely related genes encoding amino acid transport proteins are clustered on 5q32 in humans, and Chromosome (Chr) 11 in mice. The human SLC36A1 gene, which encodes the lysosomal amino acid transporter LYAAT1/PAT1, generates multiple alternative mRNAs, some of which encode truncated proteins. SLC36A1 is expressed in numerous tissues, whereas expression of SLC36A2, which encodes the glycine transporter tramdorin1/PAT2, is most abundant in kidney and muscle. Expression of a third gene, SLC36A3, is restricted to testis. Mouse Slc36a2 also is expressed in bone and fat tissue. Polymorphisms in human SLC36A2 exclude it as a candidate locus for a peripheral neuropathy that has been mapped to 5q31-33. SLC36A2 is a candidate gene for 5q-myelodysplastic syndrome, on the basis of its chromosomal location and its expression in bone.  相似文献   

7.
8.
The liver X receptor (LXR) is a nuclear receptor that acts as a sterol sensor and metabolic regulator of cholesterol and lipid homeostasis. Using a novel LXRalpha-specific antibody for immunohistochemistry, we evaluated cellular expression of LXRalpha in fetal rat tissues. In the fetal liver, LXRalpha-positive macrophages appeared at 12 days and their number peaked at 18 days of gestation. In contrast, hepatocytes expressed LXRalpha during the later stage of gestation, suggesting the functional development of the liver during ontogeny. Later, macrophages in spleen and thymus expressed LXRalpha, and some mononuclear cells in the vascular lumen compatible to primitive/fetal macrophages in the fetal circulation were found to express LXRalpha. In vitro, rat monocytes did not express LXRalpha, but monocyte-derived macrophages cultured in the presence of macrophage-colony stimulating factor revealed the distinct expression of LXRalpha in nucleoli. These findings suggest that LXRalpha plays a role in the differentiation of fetal macrophages, particularly hepatic macrophages, in rat development.  相似文献   

9.
The tissue inhibitors of metalloproteinases (TIMPs) are involved in various processes of extra-cellular matrix (ECM) metabolism by inhibiting matrix metalloproteinases (MMPs). However, the fundamental information for these genes is little known in fish. Previously, we report cDNA cloning and gene expressions of two fugu (Takifugu rubripes) TIMP-2s. Here, we cloned cDNA of fugu TIMP-3 and performed an expression analysis of TIMP-3 and -4 mRNA in fugu adult tissues using a quantitative real-time PCR. The expression level of TIMP-3 mRNA was constitutive in all tissues, while TIMP-4 was significantly higher in the brain (P=0.05). Further, we performed a whole mount in situ hybridization in fugu embryos at different stages. In early stages, TIMP-3 mRNA was abundant in the somites and the caudal end of the notochord. At hatching larvae, the TIMP-3 mRNA was abundant in the pectoral fin, dorsal and ventral fin fold along the entire antero-posterior axis. TIMP-3 may be involved in axis elongation and somitogenesis. TIMP-4 mRNA was expressed in the tail bud, at the midbrain-hindbrain boundary and in the diencephalon from 72 to 104 hpf. This indicates TIMP-4 is highly expressed in the brain matrix in vivo.  相似文献   

10.
We recently cloned and functionally characterized two novel proton/amino acid transporters (PAT1 and PAT2) from mouse. Here we report the isolation of the corresponding cDNAs of the human orthologues and one additional mouse and human PAT-like transporter cDNA, designated PAT3. The PAT proteins comprise 470 to 483 amino acids. The mouse PAT3 mRNA is expressed in testis of adult mice. In the human and mouse genomes the genes of the PAT transporters (designated SLC36A1-3 and Slc36a1-3, respectively) are clustered on human chromosome 5q33.1 and in the syntenic region of mouse chromosome 11B1.3. PAT-like transporter genes are present as well in the genomes of other eukaryotic organisms such as Drosophila melanogaster and Caenorhabditis elegans. For the PAT3 subtype transporter, we could not yet identify its function. The human PAT1 and PAT2 transporters when functionally expressed in Xenopus laevis oocytes show characteristics similar to those of their mouse counterparts.  相似文献   

11.
In this report, we demonstrate the expression of the mammalian System A neutral amino acid transporter in Xenopus laevis oocytes following microinjection of mRNA from rat liver, Chinese hamster ovary (CHO) cells, and human placenta. Stage 6 oocytes were injected with poly(A+) mRNA from one of these three sources and incubated for 24 h prior to assaying Na(+)-dependent 2-aminoisobutyric acid transport to monitor the increase in System A activity. The endogenous 2-aminoisobutyric acid uptake rates in oocytes were sufficiently slow so as to provide a low background value that was subtracted to obtain transport rates for the mammalian carrier alone. The degree of expression of the mammalian System A activity in Xenopus oocytes corresponded to the known transport rates in the tissue from which the mRNA was prepared. For example, hepatic mRNA from glucagon-treated rats produced greater System A activity than mRNA from control animals, and the mRNA from the CHO transport mutant cell line alar4-H3.9, which overproduces System A, resulted in higher transport rates than mRNA from the parental cell line (CHO-K1). Fractionation of total mRNA poly(A+) by nondenaturing agarose gel electrophoresis revealed transport activity associated with a 2.0-2.5-kilobase mRNA fraction common to each of the three tissues tested.  相似文献   

12.
13.
14.
15.
Regulation of the zinc ion concentration is physiologically important to control the activities of a variety of cellular molecules. A BLAST search against a conserved domain of known zinc transporters identified twelve putative zinc transporter family genes in the Dictyostelium genome. Phylogenetic analysis revealed the presence of three zinc transporter subfamilies in Dictyostelium. One subfamily of proteins, consisting of the ZntA-D proteins, has weak homology to the STAT3-inducible LIV-1 protein. In addition, in situ hybridization revealed that the zntA-D genes are expressed in the pstAB cells, this expression being absent in the Dd-STATa null mutant. Thus, Dd-STATa may control stalk cell differentiation through some members of the zinc transporter family genes during Dictyostelium development.  相似文献   

16.
Zhang  Xia  Gan  Yanglan  Zou  Guobing  Guan  Jihong  Zhou  Shuigeng 《BMC genomics》2019,20(2):153-162
Background

Epigenome is highly dynamic during the early stages of embryonic development. Epigenetic modifications provide the necessary regulation for lineage specification and enable the maintenance of cellular identity. Given the rapid accumulation of genome-wide epigenomic modification maps across cellular differentiation process, there is an urgent need to characterize epigenetic dynamics and reveal their impacts on differential gene regulation.

Methods

We proposed DiffEM, a computational method for differential analysis of epigenetic modifications and identified highly dynamic modification sites along cellular differentiation process. We applied this approach to investigating 6 epigenetic marks of 20 kinds of human early developmental stages and tissues, including hESCs, 4 hESC-derived lineages and 15 human primary tissues.

Results

We identified highly dynamic modification sites where different cell types exhibit distinctive modification patterns, and found that these highly dynamic sites enriched in the genes related to cellular development and differentiation. Further, to evaluate the effectiveness of our method, we correlated the dynamics scores of epigenetic modifications with the variance of gene expression, and compared the results of our method with those of the existing algorithms. The comparison results demonstrate the power of our method in evaluating the epigenetic dynamics and identifying highly dynamic regions along cell differentiation process.

  相似文献   

17.
Recent studies suggest that ribosome-binding protein 1 (RRBP1) is involved in multiple diseases such as tumorigenesis and cardiomyopathies. However, its function during embryonic development remains largely unknown. We searched Xenopus laevis database with human RRBP1 protein sequence and identified two cDNA sequences encoding Xenopus orthologs of RRBP1 including rrbp1a (NM_001089623) and rrbp1b (NM_001092468). Both genes were firstly detected at blastula stage 8 with weak signals in animal hemisphere by whole mount in situ hybridization. Evident expression of rrbp1 was mainly detected in cement gland and notochord at neurula and tailbud stages. Heart expression of rrbp1 was detected at stage 36. RT-PCR results indicated that very weak expression of rrbp1a was firstly detected in oocytes, followed by increasing expression until stage 39. Differently, very weak expression of rrbp1b was firstly observed at stage 2, and then maintained at a lower level to stage 17 followed by an intense expression from stages 19–39. Moreover, both expression profiles were also different in adult tissues. This study reports Xenopus rrbp1 expression during early embryonic development and in adult tissues. Our study will facilitate the functional analysis of Rrbp1 family during embryonic development.  相似文献   

18.
为了探讨生长相关基因对团头鲂生长发育的调控, 研究采用Real-time PCR的方法定量分析了团头鲂6个生长相关基因在其不同生长发育阶段(3、6、12月龄)相关组织(脑、肝脏、肌肉)的表达情况, 并比较了这些基因在生长快和慢两个群体的表达差异. 结果显示: GHRs基因在肝脏与肌肉中的表达量高于脑, 在6月龄表达量高于3月龄与12月龄, 生长快群体中的表达量高于生长慢群体(P0.05); IGFs基因在三个组织中均有表达, 肝脏表达量最高, 生长快群体中的表达量高于生长慢群体(P0.05). MSTN a与MSTN b基因在组织中表达模式存在差异, MSTN a在肌肉中高表达, MSTN b主要在脑与肝脏中表达. HCL聚类结果表明: 除了MSTN a基因外, 其他5个基因在生长差异的两个群体中表达量均分别聚为一支. 不同时期组织表达聚类结果表明, 除了3月龄肝脏与12月龄肌肉组织, 6个生长相关基因在不同时期的同一组织中的表达模式存在相似性. Pearson相关分析显示: GHRs与IGFs呈正相关, MSTN a基因与GHR 2、IGFs基因呈负相关, 相同基因在两个群体中呈极显著相关(P0.01).    相似文献   

19.
Mutations of the glycoprotein rBAT cause cystinuria type I, an autosomal recessive failure of dibasic amino acid transport (b(0,+) type) across luminal membranes of intestine and kidney cells. Here we identify the permease-like protein b(0,+)AT as the catalytic subunit that associates by a disulfide bond with rBAT to form a hetero-oligomeric b(0,+) amino acid transporter complex. We demonstrate its b(0,+)-type amino acid transport kinetics using a heterodimeric fusion construct and show its luminal brush border localization in kidney proximal tubule. These biochemical, transport, and localization characteristics as well as the chromosomal localization on 19q support the notion that the b(0,+)AT protein is the product of the gene defective in non-type I cystinuria.  相似文献   

20.
Life history evolution and comparative developmental biology of echinoderms   总被引:2,自引:1,他引:2  
Evolutionary biologists studying life history variation have used echinoderms in experimental, laboratory, and field studies of life history evolution. This focus on echinoderms grew originally from the tradition of comparative embryology, in which echinoderms were central. The tools for obtaining and manipulating echinoderm gametes and larvae were taken directly from comparative embryological research. In addition, the comparative embryologists employed a diverse array of echinoderms, not a few model species, and this diversity has led to a broad understanding of the development, function, and evolution of echinoderm larvae. As a result, this branch of life history evolution has deep roots in comparative developmental biology of echinoderms. Here two main aspects of this relationship are reviewed. The first is a broad range of studies of fertilization biology, dispersal, population genetics, functional morphology, and asexual reproduction in which developmental biologists might take a keen interest because of the historical origins of this research in echinoderm comparative embryology. The second is a similarly broad variety of topics in life history research in which evolutionary biologists require techniques or data from developmental biology in order to make progress on understanding patterns of life history variation among echinoderm species and higher taxa. Both sets of topics provide opportunities for interaction and collaboration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号