首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is an interest in developing approaches to “ecosystem-based” management for coral reefs. One aspect of ecosystem performance is to monitor carbon metabolism of whole communities. In an effort to explore robust techniques to monitor the metabolism of fringing reefs, especially considering the possible effects of ocean acidification, a yearlong study of the carbonate chemistry of a nearshore fringing reef in Hawaii was conducted. Diurnal changes in seawater carbonate chemistry were measured once a week in an algal-dominated and a coral-dominated reef flat on the Waimanalo fringing reef, Hawaii, from April of 2010 until May of 2011. Calculated rates of gross primary production (GPP) and net community calcification (G) were similar to previous estimates of community metabolism for other coral reefs (GPP 971 mmol C m?2 d?1; G 186 mmol CaCO3 m?2 d?1) and indicated that this reef was balanced in terms of organic metabolism, exhibited net calcification, and was a net source of CO2 to the atmosphere. Average slopes of total alkalinity versus dissolved inorganic carbon (TA–DIC slope) for the coral-dominated reef flat exhibited a greater calcification-to-net photosynthesis ratio than for the algal-dominated reef flat (coral slope vs. algal slope). Over the course of the time series, TA–DIC slopes remained significantly different between sites and were not correlated with diurnal averages in reef-water residence time or solar irradiance. These characteristic slopes for each reef flat reflect the relationship between carbon and carbonate community metabolism and can be used as a tool to monitor ecosystem function in response to ocean acidification.  相似文献   

2.
Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20–46 %) and those degrading with high macroalgal cover (57–82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m?2 h?1 on coral-dominated and 5.3 ± 2.1 g m?2 h?1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser, Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change with context, differing between systems that are regenerating versus degrading.  相似文献   

3.
Processes that affect recovery of coral assemblages require investigation because coral reefs are experiencing a diverse array of more frequent disturbances. Potential bottlenecks to coral recovery include limited larval supply, low rates of settlement, and high mortality of new recruits or juvenile corals. We investigated spatial variation in local abundance of scleractinian corals in the Seychelles at three distinct life history stages (recruits, juveniles, and adults) on reefs with differing benthic conditions. Following widespread coral loss due to the 1998 bleaching event, some reefs are recovering (i.e., relatively high scleractinian coral cover: ‘coral-dominated’), some reefs have low cover of living macrobenthos and unconsolidated rubble substrates (‘rubble-dominated’), and some reefs have high cover of macroalgae (‘macroalgal-dominated’). Rates of coral recruitment to artificial settlement tiles were similar across all reef conditions, suggesting that larval supply does not explain differential coral recovery across the three reef types. However, acroporid recruits were absent on macroalgal-dominated reefs (0.0 ± 0.0 recruits tile?1) in comparison to coral-dominated reefs (5.2 ± 1.6 recruits tile?1). Juvenile coral colony density was significantly lower on macroalgal-dominated reefs (2.4 ± 1.1 colonies m?2), compared to coral-dominated reefs (16.8 ± 2.4 m?2) and rubble-dominated reefs (33.1 ± 7.3 m?2), suggesting that macroalgal-dominated reefs have either a bottleneck to successful settlement on the natural substrates or a high post-settlement mortality bottleneck. Rubble-dominated reefs had very low cover of adult corals (10.0 ± 1.7 %) compared to coral-dominated reefs (33.4 ± 3.6 %) despite no statistical difference in their juvenile coral densities. A bottleneck caused by low juvenile colony survivorship on unconsolidated rubble-dominated reefs is possible, or alternatively, recruitment to rubble-dominated reefs has only recently begun. This study identified bottlenecks to recovery of coral assemblages that varied depending on post-disturbance habitat condition.  相似文献   

4.
Seascape-scale trophic links for fish on inshore coral reefs   总被引:2,自引:0,他引:2  
It is increasingly accepted that coastal habitats such as inshore coral reefs do not function in isolation but rather as part of a larger habitat network. In the Caribbean, trophic subsidies from habitats adjacent to coral reefs support the diet of reef fishes, but it is not known whether similar trophic links occur on reefs in the Indo-Pacific. Here, we test whether reef fishes in inshore coral, mangrove, and seagrass habitats are supported by trophic links. We used carbon stable isotopes and mathematical mixing models to determine the minimum proportion of resources from mangrove or seagrass habitats in the diet of five fish species from coral reefs at varying distances (0–2,200 m) from these habitats in Moreton Bay, Queensland, eastern Australia. Of the fish species that are more abundant on reefs near to mangroves, Lutjanus russelli and Acanthopagrus australis showed no minimum use of diet sources from mangrove habitat. Siganus fuscescens utilized a minimum of 25–44 % mangrove sources and this contribution increased with the proximity of reefs to mangroves (R 2 = 0.91). Seagrass or reef flat sources contributed a minimum of 14–78 % to the diet of Diagramma labiosum, a species found in higher abundance on reefs near seagrass beds, but variation in diet among reefs was unrelated to seascape structure. Seagrass or reef flat sources also contributed a minimum of 8–55 % to a fish species found only on reefs (Pseudolabrus guentheri), indicating that detrital subsidies from these habitats may subsidize fish diet on reefs. These results suggest that carbon sources from multiple habitats contribute to the functioning of inshore coral reef ecosystems and that trophic connectivity between reefs and mangroves may enhance production of a functionally important herbivore.  相似文献   

5.
The present study was conducted on Tamandaré reefs, northeast Brazil and aimed to analyse the importance of different factors (e.g. tourism activity, fishing activity, coral abundance and algal abundance) on reef fish abundance and species richness. Two distinct reef areas (A ver o mar and Caieiras) with different levels of influence were studied. A total of 8239 reef fish individuals were registered, including 59 species. Site 1 (A ver o mar) presented higher reef fish abundance and richness, with dominance of roving herbivores (29.9 %) and mobile invertebrate feeders (28.7 %). In contrast, at Site 2 (Caieiras) territorial herbivores (40.9 %) predominated, followed by mobile invertebrate feeders (24.6 %). Concerning the benthic community, at Site 1 macroalgae were recorded as the main category (49.3 %); however, Site 2 was dominated by calcareous algae (36.0 %). The most important variable explaining more than 90 % of variance on reef fish abundance and species richness was macroalgae abundance, followed by fishing activity. Phase shifts on coral reefs are evident, resulting in the replacement of coral by macroalgae and greatly influencing reef fish communities. In this context, it is important to understand the burden of the factors that affect reef fish communities and, therefore, influence the extinction vulnerability of coral reef fishes.  相似文献   

6.
Factors affecting coral recruitment are critical in influencing the scope and rate of reef recovery after disturbance. In December 2012, super-typhoon Bopha caused immense damage to the eastern reefs of Palau, resulting in near complete loss of coral cover. Within weeks following the typhoon, an ephemeral monospecific bloom of the foliose red macroalga Liagora (up to 40 % cover in February 2013) was recorded at impacted reefs with moderate wave exposure. Conversely, impacted and un-impacted reefs in areas of low wave exposure remained Liagora free. To quantify the effect of this ephemeral macroalgal bloom on coral recruitment, we installed settlement tiles during the major spawning period (March–April 2013) at forereefs with and without Liagora. Reefs (n = 3) with Liagora (13–24 % cover in April) experienced an almost complete failure of settlement, with only two individual corals recorded on settlement tiles (n = 90). This settlement failure was unexpected, as tiles were situated adjacent to, and not within Liagora canopies. In contrast, settlement was significantly higher on reefs that lacked macroalgae (n = 3), ranging from an average of 0.5–2.5 and 2.7–18.9 individuals 25 cm?2 per top- and under-sided tile, respectively. Reefs with and without Liagora were in close proximity (≤8 km), and hydrodynamic models predicted that larval supply did not limit coral settlement among sites. While some differences in the community composition on the tiles were observed among sites, settlement substrate availability also did not limit coral settlement. Generalised linear mixed effects models indicated that while no settlement substrate explained more than 10 % of the variability in coral settlement, coral cover positively accounted for 26 %, and the cover of Liagora on reefs negatively accounted for more than 50 % of the observed variation. Combined, our results indicate that the typhoon induced ephemeral macroalgal bloom resulted in a reef-scale failure of coral settlement.  相似文献   

7.
In April/May each year from 1995 to 2000, ascidians were sampled randomly with 35 1m2 quadrats from three different reef habitats (intertidal reef tops, coastal reef walls and shallow-bank reefs) at four replicate localities (Praia do Forte, Itacimirim, Guarajuba and Abai) in northern Bahia (Brazil). As the sampling period included the 1997/1998 El Niño event, the most severe on record, for the first time these results allow a quantitative assessment of the impact of this major environmental stressor on the biodiversity of associated coral reef ascidians. Across all reef habitats, 22 ascidian species were recorded from three different orders (Aplousobranchia, Phlebobranchia and Stolidobranchia). After El Niño, all species showed significantly altered densities (ANOVA, F=602.90, p<0.0001); many species were absent from the reefs within 2 years of the El Niño period, but densities of Lissoclinum perforatum (all reefs) and Echinoclinum verrilli (subtidal reefs) increased significantly from 1998 onwards. Univariate and multivariate analyses confirmed that significant changes in assemblage composition had occurred. BIOENV analysis identified turbidity, mean temperature and cloud cover as the main factors best explaining these assemblage changes. Our results suggest that although the 1997/1998 El Niño had a differential effect on the species contributing to the ascidian assemblage of Brazilian coral reefs, most species disappeared and those remaining are likely to enhance reef degradation through their bioeroding activities.  相似文献   

8.
Determining the spatial genetic structure within and among cold-water coral populations is crucial to understanding population dynamics, assessing the resilience of cold-water coral communities and estimating genetic effects of habitat fragmentation for conservation. The spatial distribution of genetic diversity in natural populations depends on the species’ mode of reproduction, and coral species often have a mixed strategy of sexual and asexual reproduction. We describe the clonal architecture of a cold-water coral reef and the fine-scale population genetic structure (<35 km) of five reef localities in the NE Skagerrak. This study represents the first of this type of analysis from deep waters. We used thirteen microsatellite loci to estimate gene flow and genotypic diversity and to describe the fine-scale spatial distribution of clonal individuals of Lophelia pertusa. Within-population genetic diversity was high in four of the five reef localities. These four reefs constitute a genetic cluster with asymmetric gene flow that indicates metapopulation dynamics. One locality, the Säcken reef, was genetically isolated and depauperate. Asexual reproduction was found to be a highly important mode of reproduction for L. pertusa: 35 genetic individuals were found on the largest reef, with the largest clone covering an area of nearly 300 m2.  相似文献   

9.
In 1970, coral reef science was warned that the crown-of-thorns starfish, Acanthaster planci, might cause the extinction of scleractinian corals in the Pacific Ocean. Now, 20 years later we can fortunately say that this alarm was almost certainly too severe. Many reefs were devastated by the starfish, but none are extinct, none have disappeared and many are in various stages of recovery. But now in the 1990's a new alarm is being sounded. This time the concern is over widespread destruction of coral reefs by elevated surface temperatures. Once again a few scientists have issued a dire warning that these events may represent a harbinger of ocean warming caused by the Greenhouse Effect. Has not Acanthaster taught coral reef science a lesson? The debate is far from over but this time the mood in general is not one of over-reaction. This time the Cassandras will be tested by the truth of careful experimentation, long-term monitoring and objective interpretation. Coral reef science appears to have come of age.  相似文献   

10.
The severely degraded condition of many coral reefs worldwide calls for active interventions to rehabilitate their physical and biological structure and function, in addition to effective management of fisheries and no‐take reserves. Rehabilitation efforts to stabilize reef substratum sufficiently to support coral growth have been limited in size. We documented a large coral reef rehabilitation in Indonesia aiming to restore ecosystem functions by increasing live coral cover on a reef severely damaged by blast fishing and coral mining. The project deployed small, modular, open structures to stabilize rubble and to support transplanted coral fragments. Between 2013 to 2015, approximately 11,000 structures covering 7,000 m2 were deployed over 2 ha of a reef at a cost of US$174,000. Live coral cover on the structures increased from less than 10% initially to greater than 60% depending on depth, deployment date and location, and disturbances. The mean live coral cover in the rehabilitation area in October 2017 was higher than reported for reefs in many other areas in the Coral Triangle, including marine protected areas, but lower than in the no‐take reference reef. At least 42 coral species were observed growing on the structures. Surprisingly, during the massive coral bleaching in other regions during the 2014–2016 El Niño–Southern Oscillation event, bleaching in the rehabilitation area was less than 5% cover despite warm water (≥30°C). This project demonstrates that coral rehabilitation is achievable over large scales where coral reefs have been severely damaged and are under continuous anthropogenic disturbances in warming waters.  相似文献   

11.
Herbivorous fishes are a critical functional group on coral reefs, and there is a clear need to understand the role and relative importance of individual species in reef processes. While numerous studies have quantified the roles of parrotfishes and surgeonfishes on coral reefs, the rabbitfishes (f. Siganidae) have been largely overlooked. Consequently, they are typically viewed as a uniform group of grazing or browsing fishes. Here, we quantify the diet and distribution of rabbitfish assemblages on six reefs spanning the continental shelf in the northern Great Barrier Reef. Our results revealed marked variation in the diet and distribution of rabbitfish species. Analysis of stomach contents identified four distinct groups: browsers of leathery brown macroalgae (Siganus canaliculatus, S. javus), croppers of red and green macroalgae (S. argenteus, S. corallinus, S. doliatus, S. spinus) and mixed feeders of diverse algal material, cyanobacteria, detritus and sediment (S. lineatus, S. punctatissimus, S. punctatus, S. vulpinus). Surprisingly, the diet of the fourth group (S. puellus) contained very little algal material (22.5 %) and was instead dominated by sponges (69.1 %). Together with this variation in diet, the distribution of rabbitfishes displayed clear cross-shelf variation. Biomass was greatest on inner-shelf reefs (112.7 ± 18.2 kg.ha?1), decreasing markedly on mid- (37.8 ± 4.6 kg.ha?1) and outer-shelf reefs (9.7 ± 2.2 kg.ha?1). This pattern was largely driven by the browsing S. canaliculatus that accounted for 50 % of the biomass on inner-shelf reefs, but was absent in mid- and outer-shelf reefs. Mixed feeders, although primarily restricted to the reef slope and back reef habitats, also decreased in abundance and biomass from inshore to offshore, while algal cropping taxa were the dominant group on mid-shelf reefs. These results clearly demonstrate the extent to which diet and distribution vary within the Siganidae and emphasise the importance of examining function on a species-by-species basis.  相似文献   

12.
Brown band (BrB) disease manifests on corals as a ciliate-dominated lesion that typically progresses rapidly causing extensive mortality, but it is unclear whether the dominant ciliate Porpostoma guamense is a primary or an opportunistic pathogen, the latter taking advantage of compromised coral tissue or depressed host resistance. In this study, manipulative aquarium-based experiments were used to investigate the role of P. guamense as a pathogen when inoculated onto fragments of the coral Acropora hyacinthus that were either healthy, preyed on by Acanthaster planci (crown-of-thorns starfish; COTS), or experimentally injured. Following ciliate inoculation, BrB lesions developed on all of COTS-predated fragments (n = 9 fragments) and progressed up to 4.6 ± 0.3 cm d?1, resulting in ~70 % of coral tissue loss after 4 d. Similarly, BrB lesions developed rapidly on experimentally injured corals and ~38 % of coral tissue area was lost 60 h after inoculation. In contrast, no BrB lesions were observed on healthy corals following experimental inoculations. A choice experiment demonstrated that ciliates are strongly attracted to physically injured corals, with over 55 % of inoculated ciliates migrating to injured corals and forming distinct lesions, whereas ciliates did not migrate to healthy corals. Our results indicate that ciliates characteristic of BrB disease are opportunistic pathogens that rapidly migrate to and colonise compromised coral tissue, leading to rapid coral mortality, particularly following predation or injury. Predicted increases in tropical storms, cyclones, and COTS outbreaks are likely to increase the incidence of coral injury in the near future, promoting BrB disease and further contributing to declines in coral cover.  相似文献   

13.
Many coral reef fish species use mangrove and seagrass beds as nursery areas. However, in certain regions, the absence or scarcity of such habitats suggests that juvenile coral reef fish may be seeking refuge elsewhere. The underlying biogenic substratum of most coral reefs is structurally complex and provides many types of refuge. However, on young or subtropical coral reefs, species may be more reliant on the living coral layer as nursery areas. Such is the case on the high-latitude coral reefs of South Africa where the coral communities consist of a thin veneer of coral overlaying late Pleistocene bedrock. Thus, the morphology of coral species may be a major determinant in the availability of refuge space. Acropora austera is a branching species that forms large patches with high structural complexity. Associated with these patches is a diverse community of fish species, particularly juveniles. Over the past decade, several large (>100 m2) A. austera patches at Sodwana Bay have been diminishing for unknown reasons and there is little evidence of their replacement or regrowth. Seven patches of A. austera (AP) and non-A. austera (NAP) were selected and monitored for 12 months using visual surveys to investigate the importance of AP as refugia and nursery areas. There were significant differences in fish communities between AP and NAP habitats. In total, 110 species were recorded within the patches compared to 101 species outside the patches. Labrids and pomacentrids were the dominant species in the AP habitats, while juvenile scarids, acanthurids, chaetodons and serranids were also abundant. The diversity and abundance of fish species increased significantly with AP size. As the most structurally complex coral species on the reefs, the loss of APs may have significant implications for the recruitment and survival of certain fish species.  相似文献   

14.
Cliona vermifera is a common excavating sponge in coral reefs from the East Pacific. Abundance and reproductive patterns of the sponge in a Mexican Pacific coral reef over a 4-year period are herein described. Sponge abundance was estimated along three transects 50 m long which were randomly placed on the reef, and along each one, a piece of coral rubble and a branch of a live coral from the Pocillopora spp. coral colony closest to the transect were collected at random, approximately every 2 m, yielding 25 pieces of each category per transect (and 75 pieces total of each category). A 2-way ANOVA revealed that invasion was significantly higher in living coral colonies (34.8 %) than in rubble (13.7 %). It also indicated that the abundance in both coralline substrates showed a temporal variation without a clear pattern of increase over the years. It was estimated that 60–85 % of sponges in the population reproduced sexually every year. The sponge proved gonochoristic, with a sex ratio strongly departing from parity (1 male: 3 females). Over the 4-year study period, at least two cohorts of oocytes with densities of up to 3.5 oocytes per mm2 tissue were observed. Spermatogenesis lasted about a month, but often producing more than a pulse from July to November, coupled with peaks of oocyte maturation. Fertilization occurred internally to produce encapsulated zygotes that were released in one or more spawning events from July to November. In the following months (December to February), which were the periods of lowest temperature (~18.5–20 °C), no gametic activity occurred in the sponges. Because anomalous temperature rises that are detrimental to corals do not appear to negatively affect the reproduction and abundance of C. vermifera, it is likely that the excavating activity of this sponge may be compromising the health of those coral reefs that are recurrently affected by episodes of thermal stress.  相似文献   

15.
Despite the growing impact of coral diseases on reef ecosystems, little is known about the role of coral predation in disease transmission. An experiment on the coral reefs of Derawan Island, Indonesia, revealed brown-band syndrome on Acropora cytherea coral colonies following predation by the crown-of-thorn starfish Acanthaster planci. To experimentally exclude predation, living coral tissue adjacent to feeding scars was enclosed using cages and monitored for 15 days. Compared with similarly caged but uninjured colonies, which showed no sign of disease or tissue loss, preyed upon colonies showed a higher incidence of the disease, coupled with further tissue mortality. This study provides preliminary evidence that A. planci might promote the transmission of some coral diseases.  相似文献   

16.
Changing oceanic conditions, particularly ocean warming and altered currents, can affect the reproductive success of corals. Improving the knowledge of coral reproductive processes at the marginal range limits of coral reefs is important for understanding the ecology of subtropical coral communities and the potential for coral species to expand their ranges in higher latitudes in the future. The extent of live coral cover around subtropical Lord Howe Island (LHI; 31°33′S, 159°05′E) approximately 600 km off the east coast of Australia, has been relatively stable over the last several decades; however, shifts in dominant species in the adult coral community have been reported. To examine the potential influences of recent altered currents and shifts in dominant scleractinian taxa within this community, this study examined spatial and seasonal variation of coral larval settlement at different habitats within the LHI reef lagoon. The study also assessed whether the assemblage of scleractinian corals settling at LHI has changed between 1990–1991 and 2011–2012. Mean densities of coral settlement in 2011–2012 (230 spat m?2 yr?1) were consistent with those reported in 1990–1991 and in other regions. However, changes in taxonomic composition were apparent with increases in the proportion of Acroporidae spat at some sites. Settlement of all taxa was highest over summer months, whereas during winter only one coral spat (Pocilloporidae) was detected. Coral settlement was highest and most taxonomically diverse at sites closest to the reef crest, where mortality of settled spat was also greatest. Rates of settlement were high compared with juvenile densities; hence, post-settlement mortality is also likely to be high. Post-settlement processes, influenced by local environmental conditions, are likely to be very important in structuring the adult coral communities within the LHI reef lagoon.  相似文献   

17.
The green birdmouth wrasse Gomphosus caeruleus is present all year round on the coral reefs of Reunion Island (Indian Ocean). A group of individuals was followed on one of these reefs with the objective of studying the reproduction mode of the species, the influence of environmental factors, and social behaviors on the control of reproduction. Our observations revealed that G. caeruleus is, like many Labridae, a protogynous hermaphrodite species, probably diandric, that the reproduction of G. caeruleus is, like in other reef fish species, influenced by the lunar cycle with a peak of reproductive activity during waxing gibbous phase, and that G. caeruleus displays social behavior leading to alternating haremic mating system on a single territory and lek-like mating systems without aggressions between males. These observations enhanced our knowledge of the reproduction of Labridae and reef species.  相似文献   

18.
Coral communities at Moorea, French Polynesia, and on the Great Barrier Reef (GBR), Australia, were severely depleted by disturbances early in the 1980s. Corals were killed by the predatory starfish Acanthaster planci, by cyclones, and/or by depressed sea level. This study compares benthic community structure and coral population structures on three disturbed reefs (Vaipahu-Moorea; Rib and John Brewer Reefs-GBR) and one undisturbed reef (Davies Reef-GBR) in 1987–89. Moorea barrier reefs had been invaded by tall macrophytes Turbinaria ornata and Sargassum sp., whereas the damaged GBR reefs were colonised by a diverse mixture of short macrophytes, turfs and coralline algae. The disturbed areas had broadly similar patterns of living and dead standing coral, and similar progress in recolonisation, which suggests their structure may converge towards that of undisturbed Davies Reef. Corals occupying denuded areas at Vaipahu, Rib and John Brewer were small (median diameter 5 cm in each case) and sparse (means 4–8 m-2) compared to longer established corals at Davies Reef (median diameter 9 cm; mean 18 m-2). At Moorea, damselfish and sea urchins interacted with corals in ways not observed in the GBR reefs. Territories of the damselfish Stegastes nigricans covered much of Moorea's shallow reef top. They had significantly higher diversity and density of post-disturbance corals than areas outside of territories, suggesting that the damselfish exerts some influences on coral community dynamics. Sea urchins on Moorea (Diadema setosum Echinometra mathaei, Echinotrix calamaris) were causing widespread destruction of dead standing coral skeletons. Overall, it appears that the future direction and speed of change in the communities will be explicable more in terms of local than regional processes.  相似文献   

19.
Dissolved organic nitrogen (DON) potentially plays a major role in sustaining the high productivity and biological diversity of coral reefs. However, data are scarce regarding sources and sinks of DON. This study, for the first time, determined the 15N isotopic composition of total dissolved nitrogen (δ15NTDN), reflecting the isotopic signature of DON, in the water column over a coral reef. The uniformity in δ15NTDN during high tide (3.2 ± 0.3 ‰) indicated that the DON was mainly derived from offshore waters. In contrast, higher spatial heterogeneity of δ15NTDN (3.1 ± 0.9 ‰) and DON concentrations during low tide indicated the existence of local DON sources patchily distributed over the reef. Low δ15NTDN values located mid-reef were indicative of DON release from organisms that obtained their N via N2 fixation, whereas high δ15NTDN appeared to reflect localized release of DON by organisms exposed to dissolved inorganic nitrogen with elevated 15N, such as from terrestrial and offshore inputs. Collectively, the results highlight the importance of spatial patterns in DON release from reef communities in the N cycling of coral reefs.  相似文献   

20.
Sediments are a ubiquitous feature of all coral reefs, yet our understanding of how they affect complex ecological processes on coral reefs is limited. Sediment in algal turfs has been shown to suppress herbivory by coral reef fishes on high-sediment, low-herbivory reef flats. Here, we investigate the role of sediment in suppressing herbivory across a depth gradient (reef base, crest and flat) by observing fish feeding following benthic sediment reductions. We found that sediment suppresses herbivory across all reef zones. Even slight reductions on the reef crest, which has 35 times less sediment than the reef flat, resulted in over 1800 more herbivore bites (h−1 m−2). The Acanthuridae (surgeonfishes) were responsible for over 80 per cent of all bites observed, and on the reef crest and flat took over 1500 more bites (h−1 m−2) when sediment load was reduced. These findings highlight the role of natural sediment loads in shaping coral reef herbivory and suggest that changes in benthic sediment loads could directly impair reef resilience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号