首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of skeleton morphogenesis is described for broken and totally removed spines in clypeasteroid (hollow spine) and camarodont (solid spine) sea urchins. Spine regeneration after total spine removal is completed in 40–45 days in clypeasteroids and in 60–70 days in camarodont sea urchins. Along with common stages of formation of longitudinal ribs in both hollow and solid spines, fundamental differences were found between the initial stages of reparative growth of the spine shaft. The spine shaft is formed from a single median process in clypeasteroids and from many simultaneously growing processes in camarodont sea urchins. Reparative morphogenesis of totally removed and partly broken spines in clypeasteroid sea urchins and totally removed spines in camarodont sea urchins leads to the formation of a skeletal structure identical to the intact spine. However, during the regeneration of broken camarodont spines, lateral growth is markedly retarded. As a result, the regenerated part of the spine shaft has a smaller diameter when the initial spine length is achieved. A hypothesis is proposed on a paedomorphic origin of spines in the clypeasteroid sea urchins on the basis of the juvenile stage of definitive spines in the camarodont sea urchins.  相似文献   

2.
Dendritic spines receive most excitatory inputs in the CNS. Recent evidence has demonstrated that the spine head volume is linearly correlated with the readily releasable pool of neurotransmitter and the PSD size. These correlations can be used to functionally interpret spine morphology. Using Golgi impregnations and light microscopy, we reconstructed 23000 spines from pyramidal neurons in layers 2/3, 4, 5 and 6 of mouse primary visual cortex and CA1 hippocampal region and measured their spine head diameters and densities. Spine head diameters and densities are variable within and across cells, although they are similar between apical and basal dendrites. When compared to other regions, layer 5 neurons have larger spine heads and CA1 neurons higher spine densities. Interestingly, we detect a correlation between spine head diameter and interspine distance within and across cells, whereby larger spines are spaced further away from each other than smaller spines. Finally, in CA1 neurons, spine head diameters are larger, and spine density lower, in distal apical dendrites (>200 microm from soma) compared to proximal regions. These results reveal that spine morphologies and densities, and therefore synaptic properties, are jointly modulated with respect to cortical region, laminar position, and, in some cases, even the position of the spine along the dendritic tree. Individual neurons also appear to regulate their apical and basal spine densities and morphologies in concert. Our data provide evidence for a homeostatic control of excitatory synaptic strength.  相似文献   

3.
The development of dendritic spines with specific geometry and membrane composition is critical for proper synaptic function. Specific spine membrane architecture, sub-spine microdomains and spine head and neck geometry allow for well-coordinated and compartmentalized signaling, disruption of which could lead to various neurological diseases. Research from neuronal cell culture, brain slices and direct in vivo imaging indicates that dendritic spine development is a dynamic process which includes transition from small dendritic filopodia through a series of structural refinements to elaborate spines of various morphologies. Despite intensive research, the precise coordination of this morphological transition, the changes in molecular composition, and the relation of spines of various morphologies to function remain a central enigma in the development of functional neuronal circuits. Here, we review research so far and aim to provide insight into the key events that drive structural change during transition from immature filopodia to fully functional spines and the relevance of spine geometry to function.  相似文献   

4.
Cidaroid sea urchins are the sister clade to all other extant echinoids and have numerous unique features, including unusual primary spines. These lack an epidermis when mature, exposing their high‐magnesium calcite skeleton to seawater and allowing the settlement of numerous epibionts. Cidaroid spines are made of an inner core of classical monocrystalline skeleton and an outer layer of polycrystalline magnesium calcite. Interestingly, cidaroids survived the Permian‐Triassic crisis, which was characterized by severe acidification of the ocean. Currently, numerous members of this group inhabit the deep ocean, below the saturation horizon for their magnesium calcite skeleton. This suggests that members of this taxon may have characteristics that may allow them to resist ongoing ocean acidification linked to global change. We compared the effect of acidified seawater (pH 7.2, 7.6, or 8.2) on mature spines with a fully developed cortex to that on young, growing spines, in which only the stereom core was developed. The cortex of mature spines was much more resistant to etching than the stereom of young spines. We then examined the properties of the cortex that might be responsible for its resistance compared to the underlying stereomic layers, namely morphology, intramineral organic material, magnesium concentration, intrinsic solubility of the mineral, and density. Our results indicate that the acidification resistance of the cortex is probably due to its lower magnesium concentration and higher density, the latter reducing the amount of surface area in contact with acidified seawater. The biofilm and epibionts covering the cortex of mature spines may also reduce its exposure to seawater.  相似文献   

5.
Dendritic spines are small protrusions that correspond to the post-synaptic compartments of excitatory synapses in the central nervous system. They are distributed along the dendrites. Their morphology is largely dependent on neuronal activity, and they are dynamic. Dendritic spines express glutamatergic receptors (AMPA and NMDA receptors) on their surface and at the levels of postsynaptic densities. Each spine allows the neuron to control its state and local activity independently. Spine morphologies have been extensively studied in glutamatergic pyramidal cells of the brain cortex, using both in vivo approaches and neuronal cultures obtained from rodent tissues. Neuropathological conditions can be associated to altered spine induction and maturation, as shown in rodent cultured neurons and one-dimensional quantitative analysis 1. The present study describes a protocol for the 3D quantitative analysis of spine morphologies using human cortical neurons derived from neural stem cells (late cortical progenitors). These cells were initially obtained from induced pluripotent stem cells. This protocol allows the analysis of spine morphologies at different culture periods, and with possible comparison between induced pluripotent stem cells obtained from control individuals with those obtained from patients with psychiatric diseases.  相似文献   

6.
Ph. Dubois  M. Jangoux 《Zoomorphology》1990,109(5):263-272
Summary The very first mineral deposits appearing in regenerating fractured adambulacral spines of Asterias rubens are minute polyhedrons that cover the surface of fractured trabeculae. Polyhedrons fuse together forming a fold from which a microspine differentiates. Microspines develop into long linear trabeculae which send out lateral processes at regular length intervals. Lateral processes from adjacent trabeculae fuse together, bridging the trabeculae and giving the regenerate the typical meshwork structure of stereom. Most of the regenerate is built up according to this growth pattern which ensures its longitudinal growth. Simultaneously, the initial fascicular stereom of the stub sends out short radial processes which branch into upward and downward directed subprocesses. The latter fuse with their equivalents located above or below, building up longitudinal rows of stereom meshes. These rows then bridge together by additional branched or unbranched lateral processes, so forming a new stereom layer which progressively covers the whole stub. Up to three new layers of stereom are formed in this way at the stub periphery. These become continuous with the stereom layers of the regenerate by fusion of reciprocal subprocesses, so ensuring the continuity between the stub and the regenerate. In both structures the first stage of mineralization results in an open stereom. Stereom thickening occurs in a second stage of mineralization (that is chronologically separated from the formation of the open stereom) and results in the differentiation of the original stereom fabrics (i.e. fascicular stereom). Regeneration of removed spines starts with the formation of a new spine base made of labyrinthic stereom. The development of the latter mostly relies on short branched and unbranched processes which fuse with each other or with predifferentiated meshes. After completion of its base, the regenerating spine lengthens and thickens similarly to the regenerating fractured spines. The diversity of the stereom growth processes observed in the present work may be reduced to the combination of one to three elementary events, viz. the development of long linear processes, of short unbranched processes and of short branched processes. A survey of the literature allows the suggestion that the implementation of these elementary events is sufficient to describe most types of stereom morphogenesis.Senior research assistant NFSR (Belgium)  相似文献   

7.
Dendritic spines receive most excitatory inputs in the neocortex and are morphologically very diverse. Recent evidence has demonstrated linear relationships between the size and length of dendritic spines and important features of its synaptic junction and time constants for calcium compartmentalisation. Therefore, the morphologies of dendritic spines can be directly interpreted functionally. We sought to explore whether there were potential differences in spine morphologies between areas and species that could reflect potential functional differences. For this purpose, we reconstructed and measured thousands of dendritic spines from basal dendrites of layer III pyramidal neurons from mouse temporal and occipital cortex and from human temporal cortex. We find systematic differences in spine densities, spine head size and spine neck length among areas and species. Human spines are systematically larger and longer and exist at higher densities than those in mouse cortex. Also, mouse temporal spines are larger than mouse occipital spines. We do not encounter any correlations between the size of the spine head and its neck length. Our data suggests that the average synaptic input is modulated according to cortical area and differs among species. We discuss the implications of these findings for common algorithms of cortical processing.  相似文献   

8.
Abnormalities in dendritic spine morphologies are often associated with mental retardation. Since dendritic spines are thought to represent a morphological correlate of neuronal plasticity, altered spine morphologies may underlie or contribute to cognitive deficits seen in mental retardation. Signaling cascades that are important for cytoskeletal regulation may have an impact upon spine morphologies. The Rho GTPase signaling pathway has been shown to be involved in the regulation of the cytoskeleton and to play fundamental roles in the structural plasticity of dendritic spines. Moreover, alterations in the Rho GTPase signaling pathway have been shown to contribute to mental retardation. Recently, different mental retardation-associated genes have been identified that encode modulators of the Rho GTPases. Disturbances in these genes can lead to mental retardation and—on the morphological level—to alterations in dendritic spines. Thus, getting more insight into the Rho GTPase signaling pathways, and the molecules involved, would not only help in understanding the basic mechanisms by which the morphologies of dendritic spines are modulated but may also allow the development of therapeutic strategies to counteract some aspects of mental retardation.  相似文献   

9.
The spines of pencil and lance urchins Heterocentrotus mammillatus and Phyllacanthus imperialis were studied as a modelof light-weight material with high impact resistance.The complex and variable skeleton construction ("stereom") of body andspines of sea urchins consists of highly porous Mg-bearing calcium carbonate.This basically brittle material with pronouncedsingle-crystal cleavage does not fracture by spontaneous catastrophic device failure but by graceful failure over the range of tensof millimeter of bulk compression instead.This was observed in bulk compression tests and blunt indentation experiments onregular,infiltrated and latex coated sea urchin spine segments.Microstructural characterization was carried out using X-raycomputer tomography,optical and scanning electron microscopy.The behavior is interpreted to result from the hierarchicstructure of sea urchin spines from the rnacroscale down to the nanoscale.Guidelines derived from this study see ceramics withlayered porosity as a possible biomimetic construction for appropriate applications.  相似文献   

10.
The general shape of test, spine and tubercle morphologies, and ambulacral pore characteristics ofRhabdocidaris nobilis (Münster 1826) andRhabdocidaris reginae n. sp. from the Upper Jurassic are interpreted in functional terms. Results are compared with an independent sedimentological and palaeoecological analysis of the host sediments. The morphological interpretation ofRhabdocidaris nobilis suggests a low energy, possibly partly dysaerobic, firmground setting as is evidenced by (1) the occurrence of slit-like C isopores and (2) tubercles with a broad muscle attachment area indicating strong, motile stalking spines. The morphological interpretation ofRhabdocidaris reginae suggests principally the same mode of life. However, the sedimentological and palaeoecological analysis of the host sediments suggest quite a different environment forRhabdocidaris reginae relative toRhabdocidaris nobilis. This phenomenon can be explained by the physiological characteristics of echinoids.  相似文献   

11.
Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo.  相似文献   

12.
Abstract. The spine morphology of all established species of Diadema and Echinothrix, including 2 color morphs of E. calamaris, were examined externally and internally via transverse sectioning to identify diagnostic species features and to assess the morphological relationship between species. Forty‐nine different morphological characters were measured and analysed using ordination by multi‐dimensional scaling (MDS) and cluster analysis. Specimens of Diadema paucispinum and D. setosum had very distinct spine structures. In D. paucispinum, the spines were more robust than those of other species of Diadema. This was evident in the spine's internal structure, with large, closely packed solid wedges, a small axial cavity, and rings of trabeculae throughout the spine's length. The spines in D. setosum were distinctive because of their length in relation to test size and the reduced flaring of their verticillations. The spines of other members of this genus were very similar to each other. Without careful sectioning, the spines from specimens of D. antillarum, D. ascensionis, D. mexicanum and D. savignyi were difficult to differentiate. The internal structures of spines for each species did, however, possess a combination of features that differentiated the species. Such features included the shape, orientation, and number of solid wedges, the presence or absence of spokes and rings of trabeculae between the solid wedges, and the presence or absence of tissue within the axial cavity. Individuals of Diadema palmeri also had spines morphologically similar to other species, however, the red pigmentation of these spines (in life and when preserved) made them easily distinguishable. The spine structures of the 2 species of Echinothrix were starkly different, while the white and brown color morphs of E. calamaris had morphologically distinctive ambulacral and interambulacral spines. The blunt, open‐tipped interambulacral spines, with reticular tissue present in the axial cavity of the white color morph, were easily distinguished from the pointed, closed‐tipped spines, with a hollow axial cavity found in the brown color morph. Such differences indicate that the brown color morph is either a subspecies or a separate species. Taken together the data show that each species has significant morphological differences in the structure of the spines. It is evident from our data that spine morphology is a useful tool to differentiate these commonly confused species.  相似文献   

13.
GluA2-containing AMPA receptors and their association with protein kinase M zeta (PKMζ) and post-synaptic density-95 (PSD-95) are important for learning, memory and synaptic plasticity processes. Here we investigated these synaptic markers in the context of an acute 1h platform stress, which can disrupt spatial memory retrieval for a short-term memory on the object placement task and long-term memory retrieval on a well-learned radial arm maze task. Acute stress increased serum corticosterone and elevated the expression of synaptic PKMζ while decreasing synaptic GluA2. Using co-immunoprecipitation, we found that this stressor promotes the clustering of GluA2, PKMζ and PSD-95, which is consistent with effects reported from overexpression of PKMζ in cell culture. Because PKMζ overexpression has also been shown to induce spine maturation in culture, we examined how stress impacts synaptic markers within changing spines across various hippocampal subfields. To achieve this, we employed a new technique combining Golgi staining and immmunohistochemistry to perform 3D reconstruction of tertiary dendrites, which can be analyzed for differences in spine types and the colocalization of synaptic markers within these spines. In CA1, stress increased the densities of long-thin and mushroom spines and the colocalization of GluA2/PSD-95 within these spines. Conversely, in CA3, stress decreased the densities of filopodia and stubby spines, with a concomitant reduction in the colocalization of GluA2/PSD-95 within these spines. In the outer molecular layer (OML) of the dentate gyrus (DG), stress increased both stubby and long-thin spines, together with greater GluA2/PSD-95 colocalization. These data reflect the rapid effects of stress on inducing morphological changes within specific hippocampal subfields, highlighting a potential mechanism by which stress can modulate memory consolidation and retrieval.  相似文献   

14.
The penile morphologies of nocturnal prosimians are complex and vary considerably between genera and species. Accordingly, comparative morphology can be useful in taxonomic studies, particularly when assessing the status of newly discovered species. I measured features of penile morphology—surface area of the glans penis; shape and size of the keratinized spines on the glans—for populations representing 14 species within the subfamily Galagoninae. Intraspecific variations in penile morphology were relatively minor. By contrast, there are significant differences in several morphological features among closely related, sympatric species, e.g., in the greater bush babies (Otolemur crassicaudatus and O. garnettii) and lesser bush babies (Galago senegalensis and Galago moholi). Assessment of glans area resulted in the recognition of a second needle-clawed form: Euoticus pallidus. Similar divisions exist in the dwarf and greater bush babies with respect to proportional spiny area and characteristics of spine size. I constructed a key based on the presence/absence of certain features—penile spines, dermal markings on the glans, penile lappets—as well as the shape of the baculum and possession of different spinal morphotypes. This key may be used to identify all 14 species of bush babies. Penile morphologies provide a useful guide to specific identity in the Galagoninae, which may be true also for other groups of nocturnal mammals.  相似文献   

15.
This paper reports the results of the first dynamic labeling experiment with regenerating spines of sea urchins Paracentrotus lividus using the stable isotope 26Mg and NanoSIMS high-resolution isotopic imaging, which provide a direct information about the growth process. Growing spines were labeled twice (for 72 and 24 h, respectively) by increasing the abundance of 26Mg in seawater. The incorporation of 26Mg into the growing spines was subsequently imaged with the NanoSIMS ion microprobe. Stereom trabeculae initially grow as conical micro-spines, which form within less than 1 day. These micro-spines fuse together by lateral outgrowths and form a thin, open meshwork (inner stereom), which is subsequently reinforced by addition of layered thickening deposits (outer stereom). The (longitudinal) growth rate of the inner stereom is ca. 125 μm/day. A single (ca. 1 μm) thickening layer in the stereom trabeculae is deposited during 24 h. The thickening process is contemporaneous with the formation micro-spines and involves both longitudinal trabeculae and transverse bridges to a similar degree. Furthermore, the skeleton-forming cells remain active in the previously formed open stereom for at least 10 days, and do not migrate upwards until the end of the thickening process. The experimental capability presented here provides a new way to obtain detailed information about the skeleton formation of a multitude of marine, calcite producing organisms.  相似文献   

16.
Growth dynamics of the primary spine of the cidaroid sea urchin Phyllacanthus imperialis was assessed for the first time using pulsed 26Mg‐labeling and NanoSIMS isotopic imaging. The sea urchin was incubated twice (for 48 h) in artificial seawater with elevated level of 26Mg. After each labeling event, the sea urchin was returned for 72 h to seawater with natural isotopic abundance of 26Mg. NanoSIMS ion microprobe was subsequently used to visualize the labeled regions of the spine with submicrometer lateral resolution. The growth of the new skeleton was restricted to the distalmost and peripheral portions of the spine. Skeletogenesis involved mostly the deposition of continuous thickening layers and lateral growth involving bridges between previously formed trabeculae. The timescale of formation of individual thickening layers (ca. 1 µm in width) on the stereom trabeculae was on the order of 1 day. Longitudinal growth occurred mainly at the periphery in the form of small portions of the thickening deposits or more massive microspines that appeared to branch and fuse with those above and below. These microspines were found to grow at about 10 µm/day. These results reveal that the skeletal growth of a juvenile cidaroid spine is complex and highly heterogeneous, with different extension rates depending on the stage of the stereom development and/or direction of the growth fronts. The growth pattern observed here at the submicrometer scale provides direct evidence supporting the earlier suggestions that the lamellar structure of echinoderm stereom is formed by periodic deposition of continuous mineral layers. J. Morphol. 275:788–796, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Inducible morphology, the conditional expression of morphological characters under certain environmental regimes, is a trait usually found in organisms subject to discrete environmental variability. In marine invertebrates, inducible changes in morphology are usually linked to unpredictable attack by predators or overgrowth competition. We present here evidence that extended spine formation in the marine bryozoan Electra pilosa is inducible by an abiotic cue, wave-related abrasion. In a laboratory experiment, we induced the formation of extended spines by subjecting colonies of E. pilosa to abrasion by seaweeds. We also investigated the potential role of Adalaria proxima, a specialist suctorial nudibranch predator of E. pilosa, in the formation of extended spines. While the presence of the predator does not itself induce extended spine formation, the spines do have a fortuitous anti-predator effect, discouraging predation both by A. proxima and another nudibranch, Polycera quadrilineata. We suggest that extended spines in E. pilosa constitute an adaptation for the protection of feeding polypides in high-energy environments, and that plasticity for the trait is of adaptive value this passively dispersed organism, which exploits in a diverse range of substrata and epifaunal habitats.  相似文献   

18.
19.
The skeleton of spines and tests of the species of sea urchins Strongylocentrotus intermedius, Mesocentrotus nudus, Scaphechinus mirabilis, and Echinocardium cordatum from the Sea of Japan is composed of a spongy stereom, consisting of calcite with a high content of magnesium. It was found that the tests and spines of the skeletons of sea urchins are composed of calcium–organic composite materials inlaid with other metals: Mg, Fe, Zn, and Rb. In the four species of sea urchins studied, the strength and other mechanical properties of the tests and spines differ and depend on the chemical composition and structural organization of their components. It was shown that the content of volatile substances correlates with their fragility or elasticity. It is revealed that the chemical composition of the tests of two species of the spherical sea urchins S. intermedius and M. nudus indicates significant differences between these two species of sea urchins.  相似文献   

20.
Gnathobasic spines are located on the protopodal segments of the appendages of various euarthropod taxa, notably chelicerates. Although they are used to crush shells and masticate soft food items, the microstructure of these spines are relatively poorly known in both extant and extinct forms. Here we compare the gnathobasic spine microstructures of the Silurian eurypterid Eurypterus tetragonophthalmus from Estonia and the Cambrian artiopodan Sidneyiainexpectans from Canada with those of the Recent xiphosuran chelicerate Limulus polyphemus to infer potential variations in functional morphology through time. The thickened fibrous exocuticle in L. polyphemus spine tips enables effective prey mastication and shell crushing, while also reducing pressure on nerve endings that fill the spine cavities. The spine cuticle of E. tetragonophthalmus has a laminate structure and lacks the fibrous layers seen in L. polyphemus spines, suggesting that E. tetragonophthalmus may not have been capable of crushing thick shells, but a durophagous habit cannot be precluded. Conversely, the cuticle of S. inexpectans spines has a similar fibrous microstructure to L. polyphemus, suggesting that S. inexpectans was a competent shell crusher. This conclusion is consistent with specimens showing preserved gut contents containing various shelly fragments. The shape and arrangement of the gnathobasic spines is similar for both L. polyphemus and S. inexpectans, with stouter spines in the posterior cephalothoracic or trunk appendages, respectively. This differentiation indicates that crushing occurs posteriorly, while the gnathobases on anterior appendages continue mastication and push food towards and into the mouth. The results of recent phylogenetic analyses that considered both modern and fossil euarthropod clades show that xiphosurans and eurypterids are united as crown-group euchelicerates, with S. inexpectans placed within more basal artiopodan clades. These relationships suggest that gnathobases with thickened fibrous exocuticle, if not homoplasious, may be plesiomorphic for chelicerates and deeper relatives within Arachnomorpha. This study shows that the gnathobasic spine microstructure best adapted for durophagy has remained remarkably constant since the Cambrian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号