首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relationships between induced high leaf intercellular CO2 concentrations, leaf K+ and NO3 ? ion movement and early fruit formation under macronutrient limitation are not well understood. We examined the effects and interactions of reduced K/N input treatments on leaf intercellular CO2, photosynthesis rate, carboxylation and water use efficiency, berry formation as well as leaf/fruit K+, NO3 ? and photosynthate retention of strawberry (Fragaria × ananassa Duch.) to enhance low-input agriculture. The field study was conducted in Nova Scotia, eastern Canada during 2009–2010. The experimental treatments consisted of five K2O rates (0, 6, 12, 18, and 24 kg ha?1) and five N rates (0, 5, 10, 15, and 20 kg ha?1), representing respectively, 0, 25, 50, 75, and 100 % of regular macronutrient recommendations based on the soil testing. The treatments were arranged in a split-plot design with three blocks in the field. The cultivar was ‘Mira’, a June-bearing crop. The results showed that strawberry plants treated with 25 %-reduced inputs could induce significantly higher leaf intercellular CO2 concentrations to improve plant photosynthesis, carboxylation and water use efficiency and translocation of leaf/fruit K+ and dissolved solids, which could advance berry formation by 6 days and produce significantly higher marketable yields (P < 0.05). Higher leaf intercellular CO2 inhibited leaf/fruit NO3 ? ion retention, but this inhibition did not occur in leaf/fruit K+ retention. Linear interactions of the K/N treatments were significant on fruit marketable yields, intercellular CO2, net photosynthesis, leaf transpiration rates, and leaf temperatures (P < 0.05). It was concluded that higher leaf CO2 could enhance plant photosynthesis, promote plant carboxylation and water use efficiency, and advance berry formation, but it could inhibit leaf NO3 ? retention. This inhibition did not find in leaf K+ ion and dissolved solid retention. Overlay co-limitation of leaf intercellular CO2 and translocation of leaf/fruit K+/NO3 ? and total dissolved solids could constrain more fruit formation attributes under full macronutrient supply than reduced inputs. It was suggested that low input would be an optimal and sustainable option for improving small fruit crop physiological development and dealing with macronutrient deficiency challenge.  相似文献   

2.
Pomacea flagellata is a gastropod conspicuous in freshwater environments, and represents a fishing resource. To assess their abundance, distribution, and secondary production, monthly samplings were carried out in Bacalar Lake from June 2012 to May 2013 at 12 sampling sites. In each site, three random transects were marked parallel to the shore. All snails on transect were collected and shell length and wet weight measured. The highest density occurred in September (1.27 ind.m?2), lowest in October (0.47 ind.m?2). Shell lengths ranged from 2 to 56 mm, with recruitment in January–March. Growth parameters were L 59.50 mm, K 0.65.year?1; the lifetime span was 3 years. Average biomass reached 5.57 wet g.m?2 and secondary production was 6.025 wet g.m?2.year-1; annual renewal rate P/B 1.08. Highest abundance and secondary production was contributed by individuals between 31 and 41 mm in length. A potential biomass of 25.06 tons of snails was estimated in the lake. Snail densities, secondary production, and turnover were very low during the year, indicating that it is not viable to consider a commercial catch without affecting the population. A ban of 10 years is proposed, and aquaculture practices of snails are recommended to recover the resource.  相似文献   

3.
North American invasions of the predatory cladoceran Bythotrephes longimanus have resulted in declines in native zooplankton abundance, species richness, and diversity. In the field, population maxima of Bythotrephes are positively correlated to those of their zooplankton prey. To test the hypothesis that increased prey availability enhances Bythotrephes fitness, we reared Bythotrephes in the laboratory on three mixed-species prey densities (equivalent to 15, 30, and 45 prey organisms day?1; designated “low,” “medium,” and “high” food treatments, respectively) over 22 days at 21°C. Bythotrephes consumed the daily equivalent of 9, 14, and 22 prey organisms at the low, medium, and high food densities. Smaller, slower prey were most often selected. Indeed, with increasing prey density, Bythotrephes’ predation rates increased, resulting in significantly higher population growth rates, net reproductive rates, growth, and first brood clutch and offspring sizes; significantly faster generation times; and shorter maximum life spans. We propose that the positive relationship between Bythotrephes population maxima and prey seen in the field is largely due to increased predation rates by Bythotrephes when prey abundance is high and the fitness benefits that ensue. Our findings may be useful for Bythotrephes risk and impact assessments.  相似文献   

4.
The agronomic performances of giant miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.) grown as bioenergy grasses are still unclear in North Carolina, due to a relatively short period of introduction. The objectives of the study were to compare the biomass yield and annual N removal of perennial bioenergy grasses and the commonly grown coastal bermudagrass [Cynodon dactylon (L.) Pers.], and to determine the optimum N rates and harvest practices for switchgrass and miscanthus. A 4-year field trial of the grasses under five annual harvest frequencies (May/Oct, June/Oct, July/Oct, Aug/Oct, and October only) and five annual N rates (0, 67,134, 202, and 268 kg N ha?1) was established at a research farm in Eastern North Carolina in 2011. Across harvest treatments and N rates, greatest biomass was achieved in the second growth year for both miscanthus (19.0 Mg ha?1) and switchgrass (15.9 Mg ha?1). Grasses demonstrated no N response until the second or the third year after crop establishment. Miscanthus reached a yield plateau with a N rate of 134 kg ha?1 since achieving plant maturity in 2013, whereas switchgrass demonstrated an increasing fertilizer N response from 134 kg N ha?1 in the third growth year (2014) to 268 kg N ha?1 in the fourth growth year (2015). The two-cut harvest system is not recommended for bioenergy biomass production in this region because it does not improve biomass yield and increased N removal leads to additional costs.  相似文献   

5.
6.
The small cyclopoid copepod Oithona is widely occurring in polar areas; however, knowledge of its biology and ecology is very limited. Here, we investigate the population dynamics, vertical distribution, and reproductive characteristics of Oithona spp. from late winter to summer, in a subarctic fjord of West Greenland. During winter–early spring, the abundance of Oithona spp. was low (1.8 × 103 ind. m?2) and the population was mainly composed of late copepodites and adults, whereas in summer, abundance peaked and younger stages dominated (1.1 × 106 ind. m?2). In general, all stages of Oithona spp. remained in the upper 100 m, with nauplii exhibiting a shallower distribution. Although no general seasonal migration was found, a deeper distribution of the adult females in winter was observed. The mean clutch size of Oithona spp. varied from 16 to 30 eggs per female, peaking in summer. Egg production rates (EPR) were low in winter–early spring (0.13 ± 0.03 eggs female?1 day?1) and reached maximum values in summer (1.6 ± 0.45 eggs female?1 day?1). EPR of Oithona spp. showed a significantly positive relationship with both temperature and protozooplankton biomass, and the development of the population seemed to be appreciably affected by temperature. Oithona spp. remained active throughout the study, stressing the key importance of these small copepods in high-latitude ecosystems, especially in periods when larger copepods are not present in the surface layer.  相似文献   

7.
Green alder (Alnus viridis ssp. fruticosa) is a dominant understory shrub during secondary successional development of upland forests throughout interior Alaska, where it contributes substantially to the nitrogen (N) economy through atmospheric N2 fixation. Across a replicated 200+ year old vegetation chronosequence, we tested the hypotheses that green alder has strong effects on soil chemical properties, and that ecosystem-level N inputs via N2 fixation decrease with secondary successional stand development. Across early-, mid-, and late-successional stands, alder created islands of elevated soil N and carbon (C), depleted soil phosphorus (P), and more acidic soils. These effects translated to the stand-level in response to alder stem density. Although neither N2 fixation nor nodule biomass differed among stand types, increases in alder densities with successional time translated to increasing N inputs. Estimates of annual N inputs by A. viridis averaged across the upland chronosequence (6.6 ± 1.2 kg N ha?1 year?1) are substantially less than inputs during early succession by Alnus tenuifolia growing along Alaskan floodplains. However, late-succession upland forests, where densities of A. viridis are highest, may persist for centuries, depending on fire return interval. This pattern of prolonged N inputs to late successional forests contradicts established theory predicting declines in N2-fixation rates and N2-fixer abundance as stands age.  相似文献   

8.
A recent alternative strategy to reduce environmental problems associated with P transport from agricultural soils is the use of bioenergy crops to remediate excess soil P. In addition to the positive impacts associated with P mitigation, harvested biomass used as a renewable energy source can also offset the cost associated with plant-based P remediation strategies. The objective of this study was to identify potential crop species that can be used for remediation of soil P and as a cellulosic feedstock for production of renewable energy in South Florida. Fifteen crop entries were investigated for their potential to remove P from a P-enriched soil. Dry matter (DM) yield varied among crop species with greatest yield observed for elephantgrass (Pennisetum purpureum Schum.) and sugarcane (Saccharum spp.) (43 and 39 Mg?ha?1 year?1, respectively). Similarly, greater P removal rates were observed for elephantgrass (up to 126 kg?P?ha?1 year?1 in 2008) followed by sugarcane (62 kg?P?ha?1 year?1 in 2008). Although there was no effect (P?=?0.45) of crop species on P reduction in the soil, soil P concentrations decreased linearly during the 3-year study. Because of its relatively greater DM yield and P removal rates, elephantgrass was shown to be a good candidate for remediation of excess soil P in South Florida Spodosols.  相似文献   

9.
Guaranteeing high crop yields while reducing environmental impacts of nitrogen fertilizer use due to associated losses of N2O emissions and nitrate (NO3 ?) leaching is a key challenge in the context of sustainable intensification of crop production. However, few field data sets are available that explore the effect of different forms of N management on yields as well as on N losses in the form of N2O or NO3 ?. Here we report on a large-scale field lysimeter (8 × 4 m2) experiment, which was designed to determine soil CH4 and N2O emissions, NO3 ? leaching losses and crop yields from a subtropical rain-fed wheat–maize rotation in the Sichuan Basin, one of the most intensively used agricultural regions in China. One control and three different fertilizer treatments with the same total rate of N application (280 kg N ha?1 y?1) were included: NF: control (no fertilizer); NPK: synthetic N fertilizer; OMNPK: synthetic N fertilizer plus pig manure; RSDNPK: synthetic N fertilizer plus crop residues. As compared to the standard NPK treatment, annual NO3 ? leaching losses for OMNPK and RSDNPK treatments were decreased by 36 and 22%, respectively (P < 0.05). Similarly, crop yield-scaled NO3 ? leaching for NPK treatment was higher than those for either OMNPK or RSDNPK treatments (P < 0.05). Direct N2O emissions for RSDNPK treatment were decreased as compared with NPK and OMNPK treatments (P < 0.05). Furthermore, the yield-scaled GWP (global warming potential) was lower for the treatments where either pig manure or crop residues were incorporated as compared to the standard NPK treatment (P < 0.05). Our study indicates that it is possible to reduce the negative environmental impact of NO3 ? leaching and N2O emissions without compromising crop productivity. Yield-scaled NO3 ? leaching, similar to the yield-scaled GWP, represents another valuable-integrated metric to address the dual goals of reducing nitrogen pollution and maintaining crop grain yield for a given agricultural system.  相似文献   

10.
Turbulence can affect predator–prey interactions. The effect of turbulence on the feeding efficiency of an ambush predator was tested with laboratory experiments. The experiments were conducted in 100-L aquaria in which ten individuals of fourth instar Chaoborus flavicans larvae were placed as predators. Two prey densities (3 and 10 ind. of Daphnia pulex L?1) and two durations (30 and 120 min) were tested in a nonturbulent treatment and five different turbulence levels [average root-mean-square (RMS) velocities ranging from 0 to 7.3 cm s?1, corresponding dissipation rates from 7.2 × 10?7 to 1.3 × 10?3 m2 s?3]. We hypothesized that the feeding rate of C. flavicans would be enhanced by turbulence due to increasing encounter rates up to a turbulence level above which a disturbance in post-encounter processes would lead to reduced feeding efficiency. However, the results showed no significant increase in the feeding rate of C. flavicans at intermediate turbulence. At high turbulence we found the expected significant negative response in the feeding rate of Chaoborus larvae. The feeding rate declined below the rates at nonturbulent and intermediate turbulence conditions as the average RMS velocity exceeded 3.1 cm s?1 (dissipation rate 9.9 × 10?5 m2 s?3, respectively).  相似文献   

11.

Key message

This study is the first to quantify tree water use below 50°S. Tree morphology differs markedly among the two investigated species, reflecting adjustment to different environmental cues.

Abstract

A pronounced environmental gradient dictates the dominance of Nothofagus in the foothills on the eastern side of the Andes Mountains in Patagonia, Argentina. Below 50° southern latitude, open forests of Nothofagus antarctica (ñire) dominate the landscape towards the Patagonian steppe where annual rainfall is low. With increasing rates of annual rainfall, corresponding with an increase in elevation, closed forests of N. pumilio (lenga) replace those of ñire. During a short-term study we assessed differences in stand structure and examined environmental, structural and functional traits related to tree water use of ñire and lenga. Sap velocity reached similar maximum rates (95–100 L m?2 sapwood h?1), but whole-tree water use (Q) was significantly lower in ñire (8–13 L day?1 tree?1) compared to lenga (20–90 L day?1 tree?1) resulting in lower stand transpiration (ñire: 0.51 mm day?1; lenga: 3.42 mm day?1) despite similar tree densities. Related to this, wind speed had a particularly significant impact on Q of ñire, but not lenga. The ratio of leaf area to sapwood area (A L/A S) clearly identified ñire to be more structurally proficient at conserving water. While stem diameter (DBH) and crown area (A C) were well related in both species, only lenga exhibited relationships between variables related to tree allometry and physiology (A C/Q, DBH/Q). Our results provide the first ecophysiological characterization of the two Nothofagus species that define important and widespread ecosystems in southern Patagonia (not only below 50°S), and provide useful data to scale water use of both species from tree to stand.  相似文献   

12.
The replacement of natural grassland by cultivated areas might favor the increase in abundance of some root-feeding species such as the white grubs, which may become a constraint for field crop production. This research aimed to assay the population density and geographical distribution of white grubs pest and other species in natural grassland and cultivated areas throughout the Brazilian Pampa biome. White grubs were sampled in 18 locations in both landscape use types and identified. Population density (number of larvae m?2) was calculated for each recorded species and sorted within two groups (pest species and other species), compared between natural grasslands and cultivated areas, as well as among locations. A dendrogram to evaluate species similarity among locations was built based on combined data obtained from both landscape use types throughout the region. In total, 31 species were found in the Brazilian Pampa, and four of them are considered as crop pests: Diloboderus abderus (Sturm, 1826), Euetheola humilis (Burmeister, 1847), Lyogenys fusca (Blanchard, 1830), and Phyllophaga triticophaga Morón & Salvadori, 1998. The average population density of pest species in cultivated areas was less than five larvae m?2, at most of locations. Some species had a wide geographical distribution (e.g. D. abderus and Cyclocephala modesta Burmeister), while other melolontids occurred at only one location. The knowledge of which white grub species are present in a field and its population densities assist farmers to take proper management decisions.  相似文献   

13.
14.
The sexual reproduction of annual and perennial Zostera marina was investigated in Moon Lake, Shandong, China. Based on the disturbance and stress regimes, the Z. marina beds were classified into five types: intertidal annual (IA) and perennial (IP) eelgrass patches, subtidal patch area (PA), meadow margin (MM) and meadow center (MC). Seed dispersal was investigated using artificial seagrass units in the five areas and another two areas [adjacent bare area and Zostera japonica meadow (Zj)]. Total and flowering shoot density and aboveground biomass of flowering shoots per unit area were higher in PA and MM, and lower in IA and IP, whereas the total biomass per unit area in MC showed the highest value. Reproductive effort (RE) in IA showed negative response to intertidal stress, while in perennial IP, PA and MM it showed significantly positive response to anthropogenic or natural disturbances. The density-based RE in perennial IP, PA and MM was 1.1-, 5.1- and 5.1-fold higher than that in MC, while in annual IA it was 0.46-fold lower. Additionally, the biomass-based RE in IP, PA and MM was 1.8-, 3.5- and 3.8-fold higher than that in MC, while the RE in IA was 0.84-fold lower. The estimated seed production per unit area was much greater in PA (60,793 ± 9,843 seeds m?2) and MM (43,414 ± 8,718 seeds m?2) than in IA (416 ± 83 seeds m?2), IP (3,820 ± 1,470 seeds m?2) and MC (9,779 ± 631 seeds m?2), while the seed density ranged from 24 ± 6 to 584 ± 56 seeds m?2. Results suggested that in response to disturbances and stress, Z. marina in subtidal areas increased their RE and seed production and thus seeds were available to be dispersed into areas where seed production was limited.  相似文献   

15.
1-(3,4-Dihydroxyphenyl) ethanol was produced biocatalytically for the first time using mushroom tyrosinase. 4-Ethylphenol at 1 mM was consumed over 12 min giving 0.23 mM 4-ethylcatechol and 0.36 mM (R/S)-1-(3,4-dihydroxyphenyl) ethanol (ee 0.5 %). Mushroom tyrosinase consumed 4-ethylphenol at 6.7 μmol min?1 mg protein?1 while the rates of formation of 4-ethylcatechol and 1-(3,4-dihydroxyphenyl) ethanol were 1.1 and 1.9 μmol min?1 mg protein?1. Addition of the ascorbic acid, as a reducing agent to biotransformation reactions, increased 4-ethylcatechol formation by 340 %. However, accumulation of 1-(3,4-dihydroxyphenyl) ethanol was not observed in the presence of ascorbic acid. While the 1-(3,4-dihydroxyphenyl) ethanol was racemic, it is the first chiral product produced by tyrosinase starting from a non-chiral substrate.  相似文献   

16.
Soil degradation in the savannah-derived agroecosystems of West Africa is often associated with rapid depletion of organic carbon stocks in soils of coarse texture. Field experiments were conducted over a period of more than 30 years at two sites in semiarid Togo to test the impact of agricultural management practices on soil C stocks and crop productivity. The resulting datasets were analysed using dynamic simulation models of varying complexity, to study the impact of crop rotation, fertiliser use and crop residue management on soil C dynamics. The models were then used to calculate the size of the annual C inputs necessary to restore C stocks to thresholds that would allow positive crop responses to fertilisers under continuous cultivation. Yields of all crops declined over the 30 years irrespective of crop rotation, fertiliser use or crop residue management. Both seed-cotton and cereal grain yields with fertiliser fluctuated around 1 t ha?1 after 20 years. Rotations that included early maturing sorghum varieties provided larger C inputs to the soil through residue biomass; around 2.5 t C ha?1?year?1. Soil C stocks, originally of 15 t ha?1 after woodland clearance, decreased by around 3 t ha?1 at both sites and for virtually all treatments, reaching lower equilibrium levels after 5–10 years of cultivation. Soil C dynamics were well described with a two-pool SOM model running on an annual time step, with parameter values of 0.25 for the fraction of resistant plant material (K1), 0.15–0.20 for the decomposition rate of labile soil C (K2) and 8–10 t C ha?1 for the fraction of stable C in the soil. Simulated addition of organic matter to the soil 30 years after woodland clearance indicated that additions of 3 t C ha?1?year?1 for 15–20 years would be necessary to build ‘threshold’ soil C stocks of around 13 t ha?1, compatible with positive crop response to fertiliser. The simulated soil C increases of 0.5 to 1.6% per year are comparable with results from long-term experiments in the region. However, the amounts of organic matter necessary to build these soil C stocks are not readily available to resource-poor farmers. These experimental results question the assumption that crop residue removal and lack of fertiliser input are responsible for soil C decline in these soils. Even when residues were incorporated and fertilisers used at high rates, crop C inputs were insufficient to compensate for C losses from these sandy soils under continuous cultivation.  相似文献   

17.
Litterfall production, decomposition and nutrient use efficiency in three different tropical forest ecosystems in SW China were studied for 10 years. Annual mean litterfall production in tropical seasonal forest (TSF) (9.47?±?1.65 Mg ha?1) was similar to that in man-made tropical forest (MTF) (9.23?±?1.29 Mg ha?1) (P?>?0.05) but both were significantly lower than that in secondary tropical forest (STF) (12.96?±?1.71 Mg ha?1) (P?<?0.05). The annual variation of litterfall was greater in TSF (17.4%, P?<?0.05) than in MTF (14.0%) or STF (13.2%). The annual mean decomposition rate of litterfall increased followed the order of MTF (2.72)?<?TSF (3.15)?<?STF (3.50) (P?<?0.05), which was not correlated with annual precipitation or annual mean temperature, but was rather related to litter quality. The nutrient use efficiency was found to be element-dependent and to vary significantly among the three forest types (P?<?0.05). These results indicate that litterfall production and decomposition rates in different tropical forest systems are related to plant species composition and are influenced strongly by coexisting species and their life stage (age) but less so by the species richness. Constructing multi-species and multistory man-made tropical forest is an effective way to enhance biological productivity and maintain soil nutrients on degraded tropical land.  相似文献   

18.
Two lactose-consuming diploid Saccharomyces cerevisiae strains, AY-51024A and AY-51024M, were constructed by expressing the LAC4 and LAC12 genes of Kluyveromyces marxianus in the host strain AY-5. In AY-51024A, both genes were targeted to the ATH1 and NTH1 gene-encoding regions to abolish the activity of acid/neutral trehalase. In AY-51024M, both genes were respectively integrated into the MIG1 and NTH1 gene-encoding regions to relieve glucose repression. Physiologic studies of the two transformants under anaerobic cultivations in glucose and galactose media indicated that the expression of both LAC genes did not physiologically burden the cells, except for AY-51024A in glucose medium. Galactose consumption was initiated at higher glucose concentrations in the MIG1 deletion strain AY-51024M than in the corresponding wild-type strain and AY-51024A, wherein galactose was consumed until glucose was completely depleted in the mixture. In lactose medium, the Sp. growth rates of AY-51024A and AY-51024M under anaerobic shake-flasks were 0.025 and 0.067 h?1, respectively. The specific lactose uptake rate and ethanol production of AY-51024M were 2.50 g lactose g CDW?1 h?1 and 23.4 g l?1, respectively, whereas those of AY-51024A were 0.98 g lactose g CDW?1 h?1 and 24.3 g lactose g CDW?1 h?1, respectively. In concentrated cheese whey powder solutions, AY-51024M produced 63.3 g l?1 ethanol from approximately 150 g l?1 initial lactose in 120 h, conversely, AY-51024A consumed 63.7 % of the initial lactose and produced 35.9 g l?1 ethanol. Therefore, relieving glucose repression is an effective strategy for constructing lactose-consuming S. cerevisiae.  相似文献   

19.
We constructed nitrogen (N) budgets for the lawns of three simulated residences built to test the environmental impacts of three different residential landscape designs in southern California. The three designs included: a “Typical” lawn planted with cool season tall fescue (Schedonorus phoenix), fertilized at the recommended rate for this species (192 kg?1 ha?1 year?1) and irrigated with an automatic timer; a design intended to lower N and water requirements (“Low Input”) with the warm season seashore paspalum (Paspalum vaginatum) fertilized at 123 kg?1 ha?1 year?1 and irrigated with a soil moisture-based system; and a design incorporating local best practices (“Low Impact” lawn) that included the native sedge species Carex, fertilized at 48 kg?1 ha?1 year?1 and irrigated by a weather station-based system. Plant N uptake accounted for 33.2 ± 0.5 (tall fescue), 53.7 ± 0.7 (seashore paspalum), and 12.2 ± 1.3 % (Carex) of annual N inputs, while estimated N retention in soil was relatively large and similar in the three lawns (41–46 %). At lower N and water inputs than Typical, Low Input showed the highest annual clipping yield and N uptake, although it also had higher denitrification rates. Leaching inorganic N losses remained low even from the Typical lawn (2 %), while gaseous N losses were highly variable. The Low Input lawn was most efficient in retaining N with relatively low water and N costs, although its fertilization rates could be further reduced to lower gaseous N losses. Our results suggest that the choice of a warm-season, C4 turf species with reduced rates of irrigation and fertilization is effective in this semi-arid region to maintain high productivity and N retention in plants and soils at low N and water inputs.  相似文献   

20.
Laboratory cultured Streptocephalus proboscideus (three sizes (mm), viz. 8.44 ± 0.95 (virgin), 14.18 ± 1.49 (adult I) and 19.24 ± 1.52 (adult II)) were offered (separately for males and females) field collected zooplankton (12 prey types) at three levels of abundance (1.0 ml−1, 2.0 ml−1 and 4.1 ind. ml−1 in 30-minute feeding experiments. Gut contents, analyzed for abundance and diversity of prey type, showed that predator size, sex and their interaction had strong effects on prey consumption. Regardless of their size, and of prey density, S. proboscideus females consumed 25–90% more prey than males. Their filtration rates (adult II) were higher (125 ml ind.−1 h.−1) than those of males (30 ml ind.−1 h.−1) too. Rotifers had the highest numerical percentage in the gut, regardless of predator size or sex. Cladocerans were only consumed by adults I and II. Adult II females consumed 28.5–43.3 μg zooplankton dry weight ind.−1 h.−1. Size distribution of B. longirostris in the field and in the gut were closely similar. This study confirms S. proboscideus as a non-selective filter feeder. Since it did not eat jumping rotifers, copepod nauplii and copepodites, it may contribute to structuring its prey communities, because good escapers will be enriched in the medium, while poor escapers will be depleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号