首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourteen taxa from Chlorophyta, Rhodophyta and Phaeophyta were collected from seven stations at different depths, along the north-western Mediterranean coast of Egypt during winter and summer 2006. Total carbohydrates (TCH), total protein (TPr), total lipids (TL), chlorophyll a, β-carotene, minerals and trace metals were determined in a total of 50 specimens. The concentrations of these components varied significantly with respect to the algal taxa and showed different patterns of distribution in the three classes. The content of TCH ranged from 5 to 20.9?%, being much higher for Cystoseira spinosa (20.9?%), TPr 3.86 to 27.65?% where Gelidium corneum showed the maximum value and TL content displayed wide variation (2.34 to 48.95?%), with Sargassum hornschuchii having the highest values. A minor component was β-carotene in all samples (1.80?2.50?×?10?3 mg (100 g)?1) which was much lower than in vegetables, in contrast to chlorophyll a concentrations which have attained high values (6.70?94.20 mg (100 g)?1) and were lower than in vegetables. Mineral content was abundant in all samples and was higher than in common food and vegetables, whereas the measured trace metals all exceeded the permissible doses and were far from the accepted concentrations in the regulations of many countries. This limits their use in food consumption, except copper which recorded acceptable concentrations in the study. The maximum values of phosphorus (3,305 mg (100 g?1), potassium (930 mg (100 g?1) and calcium (3,070 mg (100 g?1) were recorded in members of Chlorophyceae: Codium bursa, Udotea sp. and Udotea petiolata, whereas the red alga Rhodymenia ardissonei had the lowest concentrations in iodine (80 ppm) and sodium (1,450 mg (100 g)?1) and the highest concentrations in the trace metals copper (3.89 ppm), nickel (13.14 ppm), zinc (38.87 ppm) and a relatively large amount of lead (41.60 ppm).  相似文献   

2.
The critical shear stress of resuspension and rates of erosion for cohesive and loosely structured sediments must be obtained by direct measurements since there is no theoretical calculation. An in situ experiment on sediment resuspension was performed in a shallow lake (Langer See, NE Germany; area = 1.27 km2, zmax = 3.8 m) in summer 2006 using a hydrodynamically calibrated erosion chamber (Ø 20 cm). Shear velocity (u*) was incrementally increased in 11 steps (0–2.19 cm s?1) to initiate resuspension events. Entrainment rates (E) of suspended particulate matter (ESPM), total P (ETP), chlorophyll a (EChl a), and soluble reactive P (ESRP) were determined by mass balance. Two subsequent critical u* (0.53 cm s?1 and 1.48 cm s?1) support the ‘two-layered bed’ model of a fluffy surface aggregate layer (freshly deposited phytodetritus prone to resuspension) and an underlying more consolidated biostabilised layer. Patterns in ESPM (2–106 g m?2 h?1), ETP (11–532 mg m?2 h?1), and EChl a (3–24 μg m?2 h?1) revealed a sediment surface maximum of TP and Chl a and their theoretical vertical logarithmic decrease within 4 mm sediment depth, the maximum thickness of sediment layer entrained. The advective ESRP flux (17 mg m?2 h?1) was 43 times higher than the diffusive SRP flux (0.4 mg m?2 h?1). The TP and Chl a micro-profiles suggest that cohesive sediment bed formation is a function of both settling (fluff) and consolidation (biostabilisation). Thus, sediment microstructure and resuspension behavior depend on each other.  相似文献   

3.
Eryngium planum L. cell and organ cultures were maintained on Murashige and Skoog media (MS), supplemented with exogenous hormones of different types and various concentrations for high biomass growth. The callus and cell suspension cultures were treated with increased sucrose concentration and/or elicited by methyl jasmonate for the enhancement of selected phenolic acids accumulation. Three phenolic acids, rosmarinic acid (RA), chlorogenic acid (CGA) and caffeic acid (CA), were detected by HPLC-DAD in those cultures. The sum of their content in the dry material was found to be higher in the shoot culture (3.95 mg g?1), root culture (7.05 mg g?1), callus (6.20 mg g?1) and cell suspension (2.04 mg g?1) than in the leaves (1.87 mg g?1) and roots (0.76 mg g?1) of intact plants. The major compound of in vitro cultures was always rosmarinic acid. The content of RA could be increased approximately threefold (16.24 mg g?1) in the callus culture and approximately twofold (3.91 mg g?1) in the cell suspension culture by elicitation with 100 μM methyl jasmonate (MeJA). The higher concentration of sucrose (S) in the medium (5, 6 %) led to over a twofold increase of CGA content in the callus culture (2.54 mg g?1). The three mentioned phenolic acids have been found in E. planum undifferentiated and differentiated in vitro cultures for the first time.  相似文献   

4.
Myall Lakes has experienced algal blooms in recent years which threaten water quality. Biomarkers, benthic fluxes measured with chambers, and pore water metabolites were used to identify the nature and reactivity of organic matter (OM) in the sediments of Bombah Broadwater (BB), and the processes controlling sediment-nutrient release into the overlying waters. The OM in the sediments was principally from algal sources although terrestrial OM was found near the Myall River. Terrestrial faecal matter was identified in muddy sediments and was probably sourced via runoff from farm lands. The reactive OM which released nutrients into the overlying waters was from diatoms, dinoflagellates and probably cyanobacteria. Microcystis filaments were observed in surface sediments. OM degradation rates varied between 5.3 and 47.1 mmol m?2 day?1 (64–565 mg m?2 day?1), were highest in the muddy sediments and sulphate reduction rates accounted for 20–40% of the OM degraded. Diatoms, being heavy sink rapidly, and are an important vector to transport catchment N and P to sites of denitrification and P-trapping in the sediments. Denitrification rates (mean ~4 mmol N m?2 day?1), up to 7 mmol N m?2 day?1 (105 mg N m?2 day?1) were measured, and denitrification efficiencies were highest (mean = 86 ± 4%) in the sandy sediments (~20% of the area of BB), but lower in the muddy sediments (mean = 63 ± 15%). These differences probably result from higher OM loads and anaerobic respiration in muddy sediments. Most DIP (>70%) from OM degradation was not released into overlying waters but remained trapped in surface sediments. Biophysical (advective) processes were responsible for the measured metabolite (O2, CO2, DSi, DIN and DIP) fluxes across the sediment–water interface.  相似文献   

5.
Morphogenic cultures of Gloriosa superba were initiated on Murashige and Skoog’s medium fortified with 2 mg L?1 2,4-dichlorophenoxyacetic acid (2,4-D), 0.5 mg L?1 naphthaleneacetic acid (NAA), 4% sucrose and 0.1% activated charcoal. To enhance the content of the alkaloid colchicine, morphogenic cultures were treated with different concentrations of abiotic elicitors like signalling compounds, metals, biotic elicitors, precursors and a combination of elicitors. Signalling molecules like acetyl salicylic acid (ASA) and sodium nitroprusside improved the production of colchicine. Abiotic elicitors have markedly (p?≤?0.05 or ≤?0.01) enhanced the colchicine content either at lower or higher concentrations. Among the metals, the highest amount of 11.67 mg of colchicine g?1 dry wt was noticed at 60 mM rubidium chloride, followed by 60 mM NaCl (11.18 mg g?1). Contrarily, in the presence of biotic elicitors such as Fusarium oxysporum, Alternaria solani, and Saccharomyces cerevisiae, colchicine content ranged only between 2 and 5.32 mg g?1, but Bacillus subtilis repressed it. Among the aromatic amino acids, phenylalanine at 500 mg L?1 influenced the highest accumulation of 19.48 mg g?1 dry tissue, followed by tryptophan (12.47 mg g?1), and tyrosine (9.87 mg g?1), a direct precursor of colchicine biosynthesis, while intact tubers and leaves contained 4.65 and 4.16 mg of colchicine g?1 dry tissue respectively. A combination of 10 µM AlCl3 and 50 µM salicylic acid (SA) registered 17.34 mg g?1 followed by 16.24 mg g?1 tissue in presence of 1 µM HgCl2 and 50 µM SA. The results suggest that the elicitor-stimulated colchicine accumulation was a stress response and can be exploited further for commercial production.  相似文献   

6.
The present study reports, for the first time, an efficient in vitro plant regeneration protocol for Digitalis ferruginea subsp. ferruginea L. (rusty foxglove). We have used different concentrations of gibberellic acid (GA3) on Murashige and Skoog (MS) medium to assess the germination frequency of seeds. High frequency of germination was achieved on MS medium with 1.0 mg l?1 GA3. 6-Benzylaminopurine (BAP) combined with α-naphtaleneacetic acid (NAA) or 2, 4-dichlorophenoxy acetic acid (2, 4-D) in the induction MS medium induced both somatic embryogensis and shoot organogenesis. The highest percentage of callus growth (85 %) was obtained when hypocotyl explants were cultured on MS medium containing 0.5 mg l?1 2, 4-D plus 1.0 mg l?1 BAP. The maximum mean number of somatic embryos (7.3 ± 1.3 embryos) or shoots (12.0 ± 1.1 shoots) per callus was obtained when medium contained 0.25 mg l?1 NAA plus 1.0 mg l?1 BAP or 0.5 mg l?1 NAA plus 2.0 mg l?1 BAP. The regenerated shoots easily rooted on MS medium. Higher amounts of lanatoside C [13.2 ± 0.5 mg 100 g?1 dry weight (dw)] and digoxin (2.93 ± 0.31 mg 100 g?1 dw) accumulation were obtained when shoots were obtained by indirect regeneration. We also investigated derivatives of cardenolides, i.e., digitoxigenin (730 ± 180 mg 100 g?1 dw), gitoxigenin (50 ± 20 mg 100 g?1 dw) and digoxigenin (490 ± 170 mg 100 g?1 dw) from natural samples.  相似文献   

7.
Callus cultures of the endemic South-African legume Cyclopia subternata were cultivated under varying light and temperature conditions to determine their influence on biomass growth and bioflavonoids accumulation. Experimental modifications of light included complete darkness, light of different spectral quality (white, red, blue and yellow) and ultraviolet C (UVC) irradiation. The calli were also subjected to elevated temperature or cold stress. Among the tested light regimes, cultivation under blue light resulted in the highest levels of hesperidin (H)—118.00 mg 100 g?1 dry weight (DW) on 28 days of experiment, as well as isoflavones: 7-O-β-glucosides of calycosin (CG), pseudobaptigenin (PG) and formononetin (FG)—28.74, 19.26 and 10.32 mg 100 g?1 DW, respectively, in 14-days old calli. UVC irradiation applied on 20 days stimulated the accumulation of H (204.14 mg 100 g?1 DW), CG (31.84 mg 100 g?1 DW) and PG (18.09 mg 100 g?1 DW) in 28 days culture by 140, 46 and 165 %, respectively, without negatively influencing callus growth. Low temperature (13 °C) increased CG content by over 1,500 % (235.29 mg 100 g?1 DW) when applied during the whole 28-days growth cycle, at the same time causing 95 % decrease in culture growth in comparison to reference calli maintained at 24 °C. On the contrary, elevated temperature (29 °C) applied during the second half of the culture period resulted in over 300 and 500 % increase in CG and PG content (61.76 and 58.89 mg 100 g?1, respectively) while maintaining relatively high biomass yield.  相似文献   

8.
In this study, adventitious roots of Panax quinquefolium L. have been successfully established. The highest induction rate of roots was obtained in MS medium containing 3 mg L?1 IBA after 4 weeks of culture. The culture conditions of adventitious root were optimized and evaluated with response surface methodology. The best culture conditions for root growth seemed to be 0.75 salt strength MS medium, 4.70 g L?1 inoculum size and 40 days of culture. The active component contents of adventitious roots were compared with those of native roots. The total saponins content was found to be 16.28 mg g?1 in native root and 4.64 mg g?1 in adventitious root. The polysaccharide content of the adventitious root was 1.5 times higher than that in the native P. quinquefolium (30.54 vs. 20.28 mg g?1).  相似文献   

9.
20-Hydroxyecdysone is one of the most common ecdysteroids in plants with potential therapeutic applications. In this study, cell suspension cultures of Achyranthes aspera were raised in shake flasks to investigate the production of 20-hydroxyecdysone. The quantification and characterization of 20-hydroxyecdysone in the cultures were done by High performance liquid chromatography (HPLC) and Liquid Chromatography-quadrupole time-of- flight mass spectrometry (LC-Q-TOF) analyses. For raising the suspension, calli initiated from in vitro grown leaf explants were cultured in liquid Murashige and Skoog (MS) medium augmented with combinations of 2, 4-dichlorophenoxyacetic acid (1 mg L?1) and α-naphthaleneacetic acid (1 mg L?1). Maximum growth index of the cell suspension was 9.9, which was achieved during 20th day of culture (final phase of exponential growth). At this stage, the biomass accumulated was 1.09 ± 0.09 g dry weight (DW) and the 20-hydroxyecdysone concentration was 0.24 mg g?1 DW. Eliciting the cultures with 0.6 mM Methyl jasmonate for 6 days; enhanced the production of 20-hydroxyecdysone production to 0.35 mg g?1 DW. By augmenting the cultures with the precursors namely cholesterol (10 mg L?1) and 7-dehydrocholesterol (10 mg L?1), production of 20-hydroxyecdysone was boosted to 0.31 mg g?1 DW and 0.28 mg g?1 DW respectively.  相似文献   

10.
Hypericum hookerianum is a lesser known ethnomedicinal plant having wound healing, antitumor and anti-HSV-1 properties. Isolated nodes of in vitro shoots sub-cultured in the dark for 4 weeks on half strength Murashige and Skoog medium solidified with Gelzan (1.5 g l?1), and supplemented with 2.325 μM kinetin produced 8.0 ± 0.40 etiolated shoots of 5.0 ± 0.62 cm length at 74 % efficiency versus 9.2 ± 0.6 healthy shoots of 4.4 ± 0.5 cm obtained from nodes in light at 96 % efficiency. Low concentrations of hypericin were found in wild plant [0.35 ± 0.09 mg g?1 dry weight (DW)] and control green shoot cultures (0.91 ± 0.03 mg g?1 DW). Etiolated shoots exposed to a 12 h photoperiod (50 μmol m?2 s?1) through 1–25 days turned red incrementally due to synthesis and accumulation of 0.1–3.83 mg g?1 DW hypericin in sub-epidermal cortical cells of the stem and varied shaped cells of the distorted mesophyll. Flavonoid and anthocyanin concentrations of the etiolated shoots subjected to the 12 h photoperiod were 3–5 fold higher than the control shoot cultures while total chlorophylls [1.97 ± 0.05 mg g?1 fresh weight (FW)] of the light exposed shoots were significantly less compared to the control (2.86 ± 0.18 mg g?1 FW) and natural plant (6.82 ± 0.29 mg g?1 FW). HPLC analysis of shoot extracts revealed the presence of 0.14 ± 0.03, 0.16 ± 0.02 and 1.45 ± 0.16 mg g?1 DW hyperforin in wild plant, control shoot cultures and etiolated shoot cultures illuminated for 25 days, respectively. Despite a reasonable presence in etiolated shoots (0.61 ± 0.15 g?1 FW), total phenols did not increase significantly during illumination. The results indicate light induced synthesis of anti-depressant phenolic derivatives (hypericin, hyperforin and flavonoids) in etiolated shoot cultures of H. hookerianum.  相似文献   

11.
Liu W  Chen R  Chen M  Zhang H  Peng M  Yang C  Ming X  Lan X  Liao Z 《Planta》2012,236(1):239-250
Tryptophan decarboxylase (TDC) converts tryptophan into tryptamine that is the indole moiety of ajmalicine. The full-length cDNA of Rauvolfia verticillata (RvTDC) was 1,772 bps that contained a 1,500-bp ORF encoding a 499-amino-acid polypeptide. Recombinant 55.5 kDa RvTDC converted tryptophan into tryptamine. The K m of RvTDC for tryptophan was 2.89 mM, higher than those reported in other TIAs-producing plants. It demonstrated that RvTDC had lower affinity to tryptophan than other plant TDCs. The K m of RvTDC was also much higher than that of strictosidine synthase and strictosidine glucosidase in Rauvolfia. This suggested that TDC might be the committed-step enzyme involved in ajmalicine biosynthesis in R. verticillata. The expression of RvTDC was slightly upregulated by MeJA; the five MEP pathway genes and SGD showed no positive response to MeJA; and STR was sharply downregulated by MeJA. MeJA-treated hairy roots produced higher level of ajmalicine (0.270 mg g?1 DW) than the EtOH control (0.183 mg g?1 DW). Highest RvTDC expression level was detected in hairy root, about respectively 11, 19, 65, and 109-fold higher than in bark, young leaf, old leaf, and root. Highest ajmalicine content was also found in hairy root (0.249 mg g?1 DW) followed by in bark (0.161 mg g?1 DW) and young leaf (0.130 mg g?1 DW), and least in root (0.014 mg g?1 DW). Generally, the expression level of RvTDC was positively consistent with the accumulation of ajmalicine. Therefore, it could be deduced that TDC might be the key enzyme involved in ajmalicine biosynthesis in Rauvolfia.  相似文献   

12.
Production of lipopeptides fengycin and surfactin in rotating discs bioreactor was studied. The effects of rotation velocity and the addition of agitators between the discs on volumetric oxygen transfer coefficient k L a were firstly studied in model media. Then the production of lipopeptides was also studied at different agitation conditions in the modified bioreactor (with agitators). The effect of agitation on dissolved oxygen, on submerged and immobilized biomass, on lipopeptide concentrations and yields and on the selectivity of the bioreaction was elucidated and discussed. The proposed modified rotating discs bioreactor allowed to obtain high fengycin concentrations (up to 787 mg L?1), but also better selectivity of the bioreaction towards fengycin (up to 88 %) and better yields of fengycin per glucose (up to 62.9 mg g?1), lipopeptides per glucose (up to 71.5 mg g?1), fengycin per biomass (up to 309 mg g?1) and lipopeptides per biomass (up to 396 mg g?1) than those reported in the literature. Highest fengycin production and selectivity were obtained at agitation velocity of 30 min?1. The proposed non-foaming fermentation process could contribute to the scale-up of lipopeptide fermentors and promote the industrial production of fengycin. The proposed bioreactor and bioprocess could be very useful also for the production of other molecules using bioprocesses requiring bubbleless oxygen supply.  相似文献   

13.
The influence of cytokinins and culture conditions including medium volume, harvest time and elicitation with abiotic elicitors (SA/MeJ) have been studied for the optimal production of biomass and withanolides in the multiple shoot culture of Withania somnifera. Elicitation of shoot inoculum mass (2 g l?l FW) with SA at 100 μM in the presence of 0.6 mg l?l BA and 20 mg l?l spermidine for 4 h exposure time at the 4th week in 20 ml liquid medium recorded higher withanolides production (withanolides A [8.48 mg g?l DW], withanolides B [15.47 mg g?l DW], withaferin A [29.55 mg g?l DW] and withanone [23.44 mg g?l DW]), which were 1.14 to 1.18-fold higher than elicitation with MeJ at 100 μM after 5 weeks of culture. SA-elicited cultures did not exhibit much variation in biomass accumulation when compared to control. This cytokinin induces and SA-elicited multiple shoot culture protocol provides a potential alternative for the optimal production of biomass and withanolides utilizing liquid culture.  相似文献   

14.
In an attempt to scale-up of adventitious root cultures of Echinacea angustifolia for the production of biomass and caffeic acid derivatives, i.e. echinacoside, chlorogenic acid, cichoric acid, caftaric acid, and cynarin, the effects of Murashige and Skoog (MS) medium dilutions, and initial sucrose concentrations were investigated in a 5-L airlift bioreactor. In addition, the kinetics of adventitious root growth and accumulation of secondary metabolites were also studied. The greatest root dry weight (6.50 g L?l) and accumulation of total phenolics [22.06 mg g?1 DW (dry weight)], total flavonoids (5.77 mg g?1 DW) and total caffeic acid derivatives (10.63 mg g?1 DW) were obtained at quarter-strength MS medium. Of the various gradients of sucrose tested, 5 % sucrose supplementation was regarded as an optimal concentration for enhancing productivity of biomass and bioactive compounds. Neither higher salt strength (3/4–2 MS) nor sucrose concentrations (7 and 9 %) showed promotive effect on root growth and metabolite production. The kinetic studies revealed that 4 weeks of culture period is the optimal time to achieve highest productivity of metabolites. Based on these results, a large-scale (20 L) and a pilot-scale (500 L) adventitious root culture system was established. In the pilot-scale bioreactor, adventitious roots were elicitor-treated with 100 μM methyl jasmonate (MJ) on day 28. After 1 week of elicitation, 1.75 kg dry root biomass was harvested containing 60.41 mg g?1 DW of total phenolics, 16.45 mg g?1 DW of total flavonoids, and 33.44 mg g?1 DW of total caffeic acid derivatives. Among the caffeic acid derivatives, the accumulation of echinacoside (the major bioactive compound) in MJ-treated adventitious roots grown in the 500-L bioreactor was the highest (12.3 mg g?1 DW), which is approximately threefold more than the non-MJ-treated roots cultured in 5- and 20-L bioreactors.  相似文献   

15.
Metal pollution can produce many biological effects on aquatic environments. The marine diatom Amphora subtropica and the green alga Dunaliella sp. possess a high metal absorption capacity. Nickel (Ni) removal by living cells of A. subtropica and Dunaliella sp. was tested in cultures exposed to different Ni concentrations (100, 200, 300, and 500 mg L?1). The amount of Ni removed by the microalgae increased with the time of exposure and the initial Ni concentration in the medium. The metal, which was mainly removed by bioadsorption to Dunaliella sp. cell surfaces (93.63% of total Ni (for 500 mg Ni L?1) and by bioaccumulation (80.82% of total Ni (for 300 mg Ni L?1) into Amphora subtropica cells, also inhibited growth. Exposure to Ni drastically reduced the carbohydrate and protein concentrations and increased total lipids from 6.3 to 43.1 pg cell?1, phenolics 0.092 to 0.257 mg GAE g?1 (Fw), and carotenoid content, from 0.08 to 0.59 mg g?1 (Fw), in A. subtropica. In Dunaliella sp., total lipids increased from 26.1 to 65.3 pg cell?1, phenolics from 0.084 to 0.289 mg GAE g?1 (Fw), and carotenoid content from 0.41 to 0.97 mg g?1 (Fw). These compounds had an important role in protecting the algae against ROS generated by Ni. In order to cope with Ni stress shown by the increase of TBARS level, enzymatic (SOD, CAT, and GPx) ROS scavenging mechanisms were induced.  相似文献   

16.
Recently, microalgae have gained a lot of attention because of their ability to produce fatty acids in their surrounding environments. The present paper describes the influence of organic carbon on the different fatty acid pools including esterified fatty acids, intracellular free fatty acids and extracellular free fatty acids in Ochromonas danica. It also throws light on the ability of O. danica to secrete free fatty acids in the growth medium under photoautotrophic and mixotrophic conditions. Biomass production of photoautotrophically grown O. danica was higher than that of mixotrophically grown, where a cellular biomass formation of 1.8 g L?1 was observed under photoautotrophic condition which was about five folds higher than that under mixotrophic conditions. Contrary, the esterified fatty acid content reached up to 99 mg g?1 CDW under photoautotrophic conditions at the late exponential phase, while during mixotrophic conditions a maximum of 212 mg g?1 CDW was observed at the stationary phase. Furthermore, O. danica cells grown under mixotrophic conditions showed higher intracellular free fatty acid and extracellular free fatty acid contents (up to 51 and 20 mg g?1 CDW, respectively) than cells grown under photoautotrophic conditions (up to 26 and 4 mg g?1 CDW, respectively). The intra- and extracellular free fatty acids consisted of a high proportion of polyunsaturated fatty acids, mainly C18:2n?6, C18:3n?3 and C20:4n?6.  相似文献   

17.
Diatoms are considered to have great potential as new biofuel sources because they can effectively accumulate triacylglycerols (TAGs). Detailed structure information of TAG in diatoms is much needed not only for the assessment of biofuel quality such as fatty acid chain length and unsaturation degree but also for the tracing of biosynthetic precursors because the biosynthesis of TAG is typically completed by utilizing the diacylglycerol acyltransferase in the cytoplasm. In this report, a comprehensive characterization of TAGs in marine diatoms was performed using ultra performance liquid chromatography–electrospray ionization–quadrupole time-of-flight mass spectrometry. Many types of major TAGs were identified for the first time in these diatoms: 12 TAGs in Chaetoceros debilis, 9 TAGs in Phaeodactylum tricornutum Bohlin, 16 TAGs in Nitzschia closterium f. minutissima, 16 TAGs in Thalassiosira weissflogii, 13 TAGs in Thalassiosira sp., 16 TAGs in Stephanodiscus asteaea and 7 TAGs in Skeletonema costatum. Semi-quantification of TAGs in these diatoms was also carried out, and it was found that the contents of individual TAGs ranged from 0.5?±?0.1 to 217.9?±?8.1 nmol mg?1 total lipids. In addition, the total lipid contents in diatoms ranged from 143.6?±?16.3 to 201.1?±?16.3 mg g?1 dry microalgae and the total TAG contents ranged from 36.8?±?9.5 to 793.2?±?54.4 nmol mg?1 total lipids. By comparative analysis of the compositions and concentrations of major TAGs in the seven algal strains, N. closterium f. minutissima with high abundance of TAGs containing the most monounsaturated fatty acids (mainly palmitoleic acid) was considered as one of the most promising diatom strains for microalgal biofuel production. Additionally, based on the information of sn-2 fatty acid obtained (mainly C16 in the sn-2 position), we propose the hypothesis that TAGs in diatoms are mainly derived from lipids in chloroplasts through the prokaryotic biosynthesis pathway, including monogalactosyldiacylglycerol and digalactosyldiacylglycerol.  相似文献   

18.
19.
The present study consists in evaluating the inter- and intraspecific variability of phenolic contents and biological capacities of Limoniastrum monopetalum L. and L. guyonianum Boiss. extracts. Ultimately, they were subjected to HPLC for phenolic identification. Results showed a great variation of phenolic content as function of species and localities. In fact, L. guyonianum extracts (El Akarit) contained the highest polyphenol (57 mg GAE g?1 DW), flavonoid (9.47 mg CE g?1 DW) and condensed tannin contents (106.58 mg CE g?1 DW). These amounts were accompanied by the greatest total antioxidant activity (128.53 mg GAE g?1 DW), antiradical capacity (IC50 = 4.68 μg/ml) and reducing power (EC50 = 120 μg/ml). In addition, L. monopetalum and L. guyonianum extracts exhibited an important and variable antibacterial activity with a diameter of inhibition zone ranging from 6.00 to 14.83 mm. Furthermore, these extracts displayed considerable antifungal activity. L. monopetalum extracts (Enfidha) showed the strongest activity against Candida glabrata and C. krusei with a diameter exceeding 12 mm. The phytochemical investigation of these extracts confirmed the variability of phenolic composition, since the major phenolic compound varied as a function of species and locality. These findings suggest that these two halophytes may be a new source of natural antioxidants that are increasingly important for human consumption, as well as for agro-food, cosmetic and pharmaceutical industries.  相似文献   

20.
In this study, variations in the chemical composition of Costaria costata collected during 3 months of the harvest period were analyzed. Moisture (4.94–10.50 %), ash (29.25–38.19 %), protein (9.77–18.15 %), lipid (0.60–2.21 %), crude fiber (4.45–5.68 %), alginate (22.49–29.13 %), fucoxanthin (0.07–0.32 mg g?1), polyphenol (1.579–4.796 mg g?1) were analyzed from dried alga. Six mineral elements were analyzed and the most abundant were calcium (6.64–11.56 mg g?1) and magnesium (7.02–7.92 mg g?1). Analysis of fatty acid composition indicated that the polyunsaturated fatty acids palmitoleic acid and linoleic acid were abundant in May and June, whereas the saturated fatty acid palmitic acid was abundant in July. Amino acid composition was also analyzed and the most abundant amino acids were aspartic acid, glutamic acid, glycine, and alanine. The ratio of mannuronic acid to guluronic acid of alginate was 2.57, 2.17, and 1.66 in May, June, and July, respectively. The gel strength of alginate was 1,449.0, 1,935.0, and 980.5 g cm?1 in May, June, and July, respectively. The results of this study indicate that C. costata is an excellent resource that provides extensively applications in the industrial areas of chemicals, food, cosmetics, and pharmacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号