首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
D.radiodurans CatB基因的克隆及其在大肠杆菌中的表达   总被引:1,自引:0,他引:1  
通过生物信息学方法从耐辐射奇球菌(D.radiodurans)全基因组居库中查鼠并克隆了编码过氧化氢酶(Cartalase,Cat)的1611bp长CatB基因,将CatB基因连人pKK223-3表达载体,转化Cat酶链陷型大肠杆菌(E.coli UM2)。转化菌裂解液PAGE酶活性染色分析实物具有Cat酶活性,电泳过移位置与CatB位置相符。D.radiodurans CatB基因的表达可使E.  相似文献   

2.
A genomic DNA library of Deinococcus radiodurans DNA has been prepared using the plasmid vector pBR322. The recombinant plasmid was used to transform a more radiation-sensitive organism, Escherichia coli RR1. Following selection of transformed organisms by their ability to grow on ampicillin, radiation-resistant organisms were selected by irradiation with 137Cs gamma radiation. Increased radiation resistance correlates with the presence of a 3-kb fragment of DNA in these cells which is derived from D. radiodurans.  相似文献   

3.
Cell division properties of Escherichia coli B/r containing either a dnaC or a dnaI mutation were examined. Incubation at nonpermissive temperature resulted in the eventual production of cells of approximately normal size, or slightly smaller, which lacked chromosomal DNA. The cell division patterns in cultures which were grown at permissive temperature and then shifted to nonpermissive temperature were consistent with: first, division and equipartition of chromosomes by cells which were in the C and D periods at the time of the shift; second, an apparent delay in cell division; and third, commencement of the formation of chromosomeless cells. In glucose-grown cultures of the dnaI mutant, production of chromosomeless cells continued for at least 120 min, whereas in the dnaC mutant chromosomeless cells were formed during a single interval between 110 and 130 min after the temperature shift. The results are discussed in light of the hypothesis that replication of a specific chromosomal region is not an obligatory requirement for the initiation and completion of the processes leading to division in a cell which contains at least one functioning chromosome.  相似文献   

4.
The conclusion based on transmission electron microscopy, "the tightly packed ring-like nucleoid of the Deinococcus radiodurans R1 is a key to radioresistance", has instigated lots of debates. In this study, according to the previous research of PprI’s crucial role in radioresistance of D. radiodurans, we have attempted to examine and compare the nucleoid morphology differences among wild-type D. ra-diodurans R1 strain, pprI function-deficient mutant (YR1), and pprI function-complementary strains (YR1001, YR1002, and YR1004) before and after exposure to ionizing irradiation. Fluorescence mi-croscopy images indicate: (1) the majority of nucleoid structures in radioresistant strain R1 cells ex-hibit the tightly packed ring-like morphology, while the pprI function-deficient mutant YR1 cells carrying predominate ring-like structure represent high sensitivity to irradiation; (2) as an extreme radioresistant strain similar to wild-type R1, pprI completely function-complementary strain YR1001 almost displays the loose and irregular nucleoid morphologies. On the other hand, another radioresistant pprI partly function-complementary strain YR1002’s nucleiods exhibit about 60% ring-like structure; (3) a PprI C-terminal deletion strain YR1004 consisting of approximately 60% of ring-like nucleoid is very sensi-tive to radiation. Therefore, our present experiments do not support the conclusion that the ring-like nucleoid of D. radiodurans does play a key role in radioresistance.  相似文献   

5.
Deinococcus radiodurans genomic DNA, introduced to Escherichia coli in cloning vectors, has been reported to produce radioresistant E. coli that can be selected by gamma irradiation. In this report prior results are reassessed experimentally, and additional studies are presented. Results to date suggest that the acquired radioresistance of E. coli selected by gamma irradiation does not stem from expression of stable plasmid-encoded D. radiodurans sequences, and that acquired radioresistance is not readily transmitted to naive (unirradiated) E. coli by transformation of plasmid recovered from the radioresistant isolates. Several interpretations are discussed.  相似文献   

6.
7.
DNA from the radiation-resistant bacterium Deinococcus radiodurans was isolated and used to generate a cosmid library. This cosmid library was grown in Escherichia coli and radiation-resistant E. coli were isolated. Following exposure to 1000 Gy the radiation-resistant transformants exhibited a survival of approximately 10(-1) instead of the 10(-11) exhibited by the nontransformed E. coli. Smaller fragments of DNA were subcloned from the radiation-resistant E. coli; these fragments bestow similar levels of radiation resistance (ratio of slopes = 6.8) to native E. coli upon transfection.  相似文献   

8.
By comparing the dimensions and DNA contents of normal rod-shaped Escherichia coli with those of mutants that grow as spheres or ellipsoids, we have determined that two parameters remain unchanged: the DNA/mass ratio and the average cell length (diameter, for spherical cells). In consequence, the average volumes and DNA contents of the spherical mutant cells are about four to six times greater than those of rod-shaped cells growing at a similar rate. In addition, it was found that cells of both rod and sphere forms had approximately the same number of nucleoids (as seen when the DNA was condensed after inhibition of protein synthesis). The nucleoids of the spherical cells therefore consist of four to six completed chromosomes each (polytene nucleoids). We suggest that the attainment of a minimum cell length is necessary for nucleoid separation after chromosome replication and that such a separation is itself a prerequisite for septum formation.  相似文献   

9.
PprA: a pleiotropic protein promoting DNA repair, role in radiation resistance of Deinococcus radiodurans was demonstrated. In this study, the effect of radiation and oxidative stress on transgenic Escherichia coli expressing pprA has been studied. The pprA gene from D. radiodurans KR1 was cloned and expressed in E. coli. Transgenic E. coli cells expressing PprA showed twofold to threefold higher tolerance to hydrogen peroxide as compared to control. The 2.8-fold in vivo stimulation of catalase activity largely contributed by KatE was observed as compared to nonrecombinant control. Furthermore, the purified PprA could stimulate the E. coli catalase activity by 1.7-fold in solution. The effect of PprA on catalase activity observed both in vivo and in vitro was reverted to normal levels in the presence of PprA antibodies. The results suggest that enhanced oxidative stress tolerance in E. coli expressing PprA was due to the PprA stimulation of catalase activity, perhaps through the interaction of these proteins.  相似文献   

10.
The mechanism of prokaryotic chromosome segregation is not known. MreB, an actin homolog, is a shape-determining factor in rod-shaped prokaryotic cells. Using immunofluorescence microscopy we found that MreB of Escherichia coli formed helical filaments located beneath the cell surface. Flow cytometric and cytological analyses indicated that MreB-depleted cells segregated their chromosomes in pairs, consistent with chromosome cohesion. Overexpression of wild-type MreB inhibited cell division but did not perturb chromosome segregation. Overexpression of mutant forms of MreB inhibited cell division, caused abnormal MreB filament morphology and induced severe localization defects of the nucleoid and of the oriC and terC chromosomal regions. The chromosomal terminus regions appeared cohered in both MreB-depleted cells and in cells overexpressing mutant forms of MreB. Our observations indicate that MreB filaments participate in directional chromosome movement and segregation.  相似文献   

11.
Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis-DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 microM Fis, are able to collapse large DNA molecules via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role in vivo as a domain barrier element by organizing DNA loops within the E. coli chromosome.  相似文献   

12.
The behaviour of Escherichia coli cells in which all or part of the ftsK gene is under inducible control shows that FtsK protein has two functional domains: an N-terminal part that is required for cell division, and a C-terminal part that is involved in chromosome localization within the cell.  相似文献   

13.
Abstract Fourteen species of ciliates, seven of which are new, were found living in a sample of anoxic water collected from a small lake in Spain. The species belong to all six orders in which anaerobic ciliates have been described and they include the first anaerobic representatives of the order Prostomatida. This surprising diversity is probably sustained because it embraces all ciliate feeding types, and because protozoa are the only important consumers of the diversity of microbes in anoxic habitats. Six of the anaerobic ciliate species have aerobic congeners; this strengthens the contention that anaerobic ciliates evolved independently from aerobes belonging to several taxonomic groups.  相似文献   

14.
Wu LJ  Errington J 《Cell》2004,117(7):915-925
A range of genetical and physiological experiments have established that diverse bacterial cells possess a function called nucleoid occlusion, which acts to prevent cell division in the vicinity of the nucleoid. We have identified a specific effector of nucleoid occlusion in Bacillus subtilis, Noc (YyaA), as an inhibitor of division that is also a nonspecific DNA binding protein. Under various conditions in which the cell cycle is perturbed, Noc prevents the division machinery from assembling in the vicinity of the nucleoid. Unexpectedly, cells lacking both Noc and the Min system (which prevents division close to the cell poles) are blocked for division, apparently because they establish multiple nonproductive accumulations of division proteins. The results help to explain how B. subtilis specifies the division site under a range of conditions and how it avoids catastrophic breakage of the chromosome by division through the nucleoid.  相似文献   

15.
16.
The terminus region of the Escherichia coli chromosome is the scene of frequent homologous recombination. This can be demonstrated by formation of deletions between directly repeated sequences which flank a genetic marker whose loss can be easily detected. We report here that terminal recombination events are restricted to a relatively large terminal recombination zone (TRZ). On one side of the TRZ, the transition from the region with a high excision rate to the normal (low) excision rates of the rest of the chromosome occurs along a DNA stretch of less than 1 min. No specific border of this domain has been defined. To identify factors inducing terminal recombination, we examined its relation to two other phenomena affecting the same region, site-specific recombination at the dif locus and site-specific replication pausing. Both the location and the efficiency of terminal recombination remained unchanged after inactivation of the dif-specific recombination system. Similarly, inactivation of site-specific replication pausing or displacement of the replication fork trap so that termination occurs about 200 kb away from the normal region had no clear effect on this phenomenon. Therefore, terminal recombination is not a direct consequence of either dif-specific recombination or replication termination. Furthermore, deletions encompassing the wild-type TRZ do not eliminate hyperrecombination. Terminal recombination therefore cannot be attributed to the activity of some unique sequence of the region. A possible explanation of terminal hyperrecombination involves nucleoid organization and its remodeling after replication: we propose that post replicative reconstruction of the nucleoid organization results in a displacement of the catenation links between sister chromosomes to the last chromosomal domain to be rebuilt. Unrelated to replication termination, this process would facilitate interactions between the catenated molecules and would make the domain highly susceptible to recombination between sister chromosomes.  相似文献   

17.
18.
Deinococcus radiodurans, an extremely radioresistant bacterium, synthesizes coenzyme pyrroloquinoline-quinone (PQQ) but exhibits a negative phenotype for mineral phosphate solubilization. Gene for the putative PQQ synthesizing protein was PCR amplified and cloned from Deinococcus, sequenced, and expressed in Escherichia coli, under an inducible E. coli promoter. The transgenic E. coli expressed PQQ synthase protein of 42kDa and complemented the mineral phosphate solubilization phenotype of E. coli, suggesting the synthesis of an active protein. The cells expressing high levels of this protein showed increased protection against photodynamically produced reactive oxygen species. The effect could be attributed to the upregulation of antioxidant enzymes such as catalase and superoxide dismutase by PQQ in transgenic E. coli through an unknown mechanism. The study elucidates a hitherto unknown possible function of PQQ in bacteria.  相似文献   

19.
The heterodimeric HU protein, one of the most abundant DNA binding proteins, plays a pleiotropic role in bacteria. Among others, HU was shown to contribute to the maintenance of DNA superhelical density in Escherichia coli. By its properties HU shares some traits with histones and HMG proteins. More recently, its specific binding to DNA recombination and repair intermediates suggests that HU should be considered as a DNA damage sensor. For all these reasons, it will be of interest to follow the localization of HU within the living bacterial cells. To this end, we constructed HU-GFP fusion proteins and compared by microscopy the GFP green fluorescence with images of the nucleoid after DAPI staining. We show that DAPI and HU-GFP colocalize on the E. coli nucleoid. HU, therefore, can be considered as a natural tracer of DNA in the living bacterial cell.  相似文献   

20.
An Escherichia coli plasmid that confers kanamycin resistance (Kmr) was inserted into the large Deinococcus radiodurans cryptic plasmids pUE10 and pUE11, yielding pS28 and pS19. The method of insertion involved both in vitro splicing and the natural transformation of D. radiodurans and yielded full-length clones in E. coli of pUE10 and pUE11. Both pS28 and pS19 replicated and expressed Kmr in E. coli and D. radiodurans. In both pS28 and pS19, D. radiodurans plasmid sequences were immediately upstream from the Kmr determinant. Transformation experiments suggested that Kmr expression in D. radiodurans was initiated in upstream D. radiodurans sequences. Restriction maps of pS28 and pS19 showed that each plasmid contained three MraI sites. Both pS28 and pS19 transformed the MraI-producing D. radiodurans strain R1 at low frequencies. D. radiodurans strain Sark, which naturally contains pUE10 and pUE11, was transformed by pS28 and pS19 at much higher frequencies. A Sark derivative that was cured for pUE10 was isolated by screening Sark/pS28 subisolates for loss of kanamycin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号