首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Rare mutations that alter the substrate specificity of proline permease cluster in discrete regions of theputP gene, suggesting that they may replace amino acids at the active site of the enzyme. IfputP substrate specificity mutations directly alter the active site of proline permease, the mutants should show specific defects in the kinetics of proline transport. In order to test this prediction, we examined the kinetics of threeputP substrate specificity mutants. One class of mutation increases theK m over 120-fold but only decreases theV max fourfold. SuchK m mutants may be specifically defective in substrate recognition, thus identifying an amino acid critical for substrate binding. Another class of mutation decreases theV max 80-fold without changing theK m .V max mutants appear to alter the rate of substrate translocation without affecting the substrate binding site. The last class of mutation alters both theK m andV max of proline transport. These results indicate that substrate specificity mutations alter amino acids critical for Na+/proline symport.  相似文献   

2.
A psychrophilic bacterium Psychrobacter sp. C18 previously isolated from the Southern Okinawa Trough deep-sea sediments showed extracellular lipolytic activity towards tributyrin. A genomic DNA library was constructed and screened to obtain the corresponding lipase gene. The sequenced DNA fragment contains an open reading frame of 945 bp, which was denoted as the lipX gene, from which a protein sequence LipX was deduced of 315 amino acid residues with a molecular mass of 35,028 Da. This protein contained the bacterial lipase GNSMG (GxSxG, x represents any amino acid residue) and HG consensus motifs. The recombinant pET28a(+)/lipX gene was overexpressed in heterologous host Escherichia coli BL21 (DE3) cells to overproduce the lipase protein LipXHis with a 6× histidine tag at its C-terminus. Nickel affinity chromatography was used for purification of the expressed recombinant lipase. The maximum lipolytic activity of the purified recombinant lipase was obtained at temperature of 30°C and pH 8.0 with p-nitrophenyl myristate (C14) as a substrate. Thermostability assay indicated that the recombinant LipXHis is a cold-adapted lipase, which was active in 10% methanol, ethanol, acetone and 30% glycol, and inhibited partially by Zn2+, Co2+, Mn2+, Fe3+ and EDTA. Most non-ionic detergents, such as DMSO, Triton X-100, Tween 60 and Tween 80 enhanced the lipase activity but 1% SDS completely inhibited the enzyme activity. Additionally, the highest lipolytic rate of the recombinant LipXHis lipase was achieved when p-nitrophenyl myristate was used as a substrate, among all the p-nitrophenyl esters tested.  相似文献   

3.
We purified to homogeneity an intracellular esterase from the opportunistic pathogen Pseudomonas aeruginosa PAO1. The enzyme hydrolyzes p-nitrophenyl acetate and other acetylated substrates. The N-terminal amino acid sequence was analyzed and 11 residues, SEPLILDAPNA, were determined. The corresponding gene PA3859 was identified in the P. aeruginosa PAO1 genome as the only gene encoding for a protein with this N-terminus. The encoding gene was cloned in Escherichia coli, and the recombinant protein expressed and purified to homogeneity. According to sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis and analytical gel filtration chromatography, the esterase was found to be a monomer of approximately 24 kDa. The experimentally determined isoelectric point was 5.2 and the optimal enzyme activity was at 55°C and at pH 9.0. The esterase preferentially hydrolyzed short-chain fatty acids. It is inhibited by phenylmethylsulfonyl fluoride (PMSF) but not by ethylendiaminotetraacetic acid (EDTA). Native enzyme preparations typically showed a Michaelis constant (Km) and Vmax of 0.43 mM and 12,500 U mg–1, respectively, using p-nitrophenyl acetate as substrate. Homology-based database searches clearly revealed the presence of the consensus GXSXG signature motif that is present in the serine-dependent acylhydrolase protein family.  相似文献   

4.
Fungal cell walls consist of various glucans and chitin. The inky cap, Coprinellus congregatus, produces mushrooms at 25°C in a regime of 15 h light/9 h dark, and then the mushroom is autolyzed rapidly to generate black liquid droplets in which no cell walls are detected by microscopy. Chitinase cDNA from the mature mushroom tissues of C. congregatus, which consisted of 1,622 nucleotides (chi2), was successfully cloned using the rapid amplification of cDNA ends polymerase chain reaction technique. The deduced 498 amino acid sequence of Chi2 had a conserved catalytic domain as in other fungal chitinase family 18 enzymes. The Chi2 enzyme was purified from the Pichia pastoris expression system, and its estimated molecular weight was 68 kDa. The optimum pH and temperature of Chi2 was pH 4.0 and 35°C, respectively when 4-nitrophenyl N,N′-diacetyl-β-D-chitobioside was used as the substrate. The K m value and V max for the substrate A, 4-nitrophenyl N,N′-diacetyl-β-D-chitobioside, was 0.175 mM and 0.16 OD min?1unit?1, respectively.  相似文献   

5.
A previously uncharacterized gene in Neosartorya fischeri was cloned and expressed in Escherichia coli. It was found to encode a β-glucosidase (NfBGL1) distinguishable from other BGLs by its high turnover of p-nitrophenyl β-d-glucopyranoside (pNPG). Molecular determinants for the substrate recognition of NfBGL1 were studied through an initial screening of residues by sequence alignment, a second screening by homology modeling and subsequent site-directed mutagenesis to alter individual screened residues. A conserved amino acid, E445, in the substrate binding pocket of wild-type NfBGL1 was identified as an important residue affecting substrate affinity. Replacement of E445 with amino acids other than aspartate significantly decreased the catalytic efficiency (kcat/Km) of NfBGL1 towards pNPG, mainly through decreased binding affinity. This was likely due to the disruption of hydrogen bonding between the substrate and the carboxylate oxygen of the residue at position 445. Density functional theory (DFT) based studies suggested that an acidic amino acid at position 445 raises the substrate affinity of NfBGL1 through hydrogen bonding. The residue E445 is completely conserved indicating that this position can be considered as a crucial determinant for the substrate binding among GHs tested.  相似文献   

6.
N-methylmyristohydroxamic acid (1) bound to polymer micelles of laurylated poly(2- and 4-vinylpyridines) (lauryl group contet: 2VP-L, 30 mol%; 4VP-L, 33 mol%) quantitatively reacted with p-nitrophenyl acetate (NpAc) within a few seconds at 30°C, pH 8.95. Second order rate constants ka were 34,000 M?1 sec?1 for 1–2VP-L and 11,400 M?1 sec?1 for 1–4VP-L at μ = 0.5, and they were pronouncedly improved by a decrease in ionic strength (ka = 27,500–80,200 M?1 sec?1 at μ = 0.08). In contrast, poly(N-ethyl-4-vinylpyridinium bromide) hardly affected the nucleophilicity of the hydroxamate ion. Therefore, the enhancement was considered to be associated with some micellar characteristics. Typical saturation phenomena of the reaction rate were observed for p-nitrophenyl hexanoate (NpOCOPe) and 3-nitro-4-acetoxybenzoic acid (NpAcCOOH). It was suggested that binding of NpOCOPe is caused by the hydrophobic interaction, while that of NpAcCOOH is probably induced by the electrostatic interaction. It is demonstrated that the cationic polymer micelle enormously activates the bound hydroxamate anion, and these complexes would be of much interest as a biomimetic system for enzyme catalysis.  相似文献   

7.
Fusarium solani f. pisi was shown to grow on the hydroxy fatty acid biopolymer cutin as the sole carbon source. Such growth conditions induced the production of an extracellular cutin depolymerising enzyme. Analysis of products enzymatically derived from labeled cutin by thin-layer chromatography and radio gas-liquid chromatography showed that the Fusarium enzyme released all classes of cutin monomers. This enzyme preparation also catalyzed hydrolysis of several model ester substrates. It did not hydrolyze triacyl glycerol and pancreatic lipase did not hydrolyze cutin, indicating that the Fusarium enzyme is not a nonspecific lipase. With p-nitrophenyl palmitate as the model substrate the enzyme showed a broad pH optimum near 8.5 and it was stimulated by Triton X-100. Maximal stimulation was obtained at 3.7 mg/ ml of the detergent. Apparent Km for p-nitrophenyl palmitate was 1.6 × 10?4m. p-Nitrophenyl esters of C2–C18 acids gave comparable values for Km and V revealing no striking specificity. Treatment with diisopropyl fluorophosphate severely inhibited the enzyme while iodoacetamide and p-chloromercuric benzoate did not affect the enzymatic activity, suggesting that the Fusarium enzyme is a serine hydrolase.  相似文献   

8.
α-d-Galactosidases (α-d-galactoside galactohydrolase, EC 3.2.1.22) from normal coconut endosperm were isolated and partially purified by a combination of ammonium sulfate fractionation, SP-Sephadex C50–120 ion-exchange chromatography and Sephadex G-200 and G-100 gel filtration. Two molecular forms of the enzyme, designated as A and B, were eluted after SP-Sephadex C50–120 ion-exchange chromatography. α-d-Galactosidase A, which is the major isoenzyme, was partially purified 43-fold on Sephadex G-200 and has a MW of about 23 000 whereas α-d-galactosidase B was partially purified 23-fold on Sephadex G-100 and has a similar MW of about 26 600. Both isoenzymes exhibited optimum activity at pH 7.5. The apparent Km and Vmax of α-d-galactosidase A were obtained at 3.46 × 10?4M and 1.38 × 10?3 M p-nitrophenyl α-<d-galactoside, respectively. A distinct substrate inhibition was noted. The enzyme was inhibited strongly by d-galactose and to a lesser extent by myo-inositol, d-glucose-6-phosphate, l-arabinose, melibiose and iodoacetic acid. Similarly, makapuno α-d-galactosidase was localized in the 40–70 % (NH4)2SO4 cut but its optimum activity at pH 7.5 was considerably lower as compared to the normal. Its Km was obtained at 6.75 × 10?4 M p-nitrophenyl α-d-galactoside while the Vmax was noted at 5.28 × 10?3 M p-nitrophenyl α-d-galactoside. Based on the above kinetic data, the possible cause(s) of the deficiency of α-d-galactosidase activity in makapuno is discussed.  相似文献   

9.
The combining site of the Erythrina cristagalli lectin was studied by quantitative precipitin and precipitin inhibition assays. The lectin precipitated best with two fractions of a precursor human ovarian cyst blood group substance with I and i activities. A1, A2, B, H, Lea, and Leb blood group substances precipitated poorly to moderately and substances of the same blood group activity precipitated to varying extents. These differences are attributable to heterogeneity resulting from incomplete biosynthesis of carbohydrate chains. Specific precipitates with the poorly reactive blood group substances were found to be more soluble than those reacting strongly. Precipitation was minimally affected by EDTA or divalent cations. Among the monosaccharides and glycosides tested for inhibition of precipitation, p-nitrophenyl βdGal was most active and was 10 times more active than methyl βdGal, indicating involvement of hydrophobic contacts in site specificity. Methyl αdGalNAc, p-nitrophenyl αdGalNAc, methyl αdGal, N-acetyl-d-galactosamine, p-nitrophenyl αdGal, methyl βdGal, and p-nitrophenyl βdGalNAc were progressively less active than p-nitrophenyl βdGal. The best disaccharide inhibitor dGalβ1 → 4dGlcNAc was 7.5 times more potent than p-nitrophenyl βdGal. A tetraantennary and triantennary oligosaccharide containing four and three dGalβ1 → 4dGlcNAcβ1 → branches, respectively, were, because of cooperative binding effects, 1.6 and 2.5 times more active than the bi- and monoantennary oligosaccharides, respectively. dGalβ1 → 4dGlcNAcβ1 → 6dGal and dGalβ1 → 4dGlcNAcβ1 → 2dMan had the same activity, being 1.5 times more active than dGalβ1 → 4dGlcNAc, which was 2.6 and 8.5 times more active than dGalβ1 → 3dGlcNAc and dGalβ1 → 3dGlc, respectively. Substitutions by N-acetyl-d-galactos-amine or l-fucose on the d-galactose of inhibitory compounds blocked activity. These results suggest that a hydrophobic interaction with the subterminal sugar is important in the binding and that the specificity of the lectin combining site involves a terminal dGalβ1 → 4dGlcNAc and the β linkage of a third sugar.  相似文献   

10.
A new cutinase from Thermobifida alba (Tha_Cut1) was cloned and characterized for polyethylene terephthalate (PET) hydrolysis. Tha_Cut1 showed a high degree of identity to a T. cellulolysitica cutinase with only four amino acid differences outside the active site area, according to modeling data. Yet, Tha_Cut1 was more active in terms of PET surface hydrolysis leading to considerable improvement in hydrophilicity quantified based on a decrease of the water contact angle from 87.7° to 45.0°. The introduction of new carboxyl groups was confirmed and measured after esterification with the fluorescent reagent alkyl bromide, 2-(bromomethyl) naphthalene (BrNP), resulting in a fluorescence emission intensity increase from 980 to 1420 a.u. On the soluble model substrates p-nitrophenyl acetate (PNPA) and p-nitrophenyl butyrate (PNPB), the cutinase showed Km values of 213 and 1933 μM and kcat values of 2.72 and 6.03 s?1 respectively. The substrate specificity was investigated with bis(benzoyloxyethyl)terephthalate (3PET) and Tha_Cut1 was shown to release primarily 2-hydroxyethyl benzoate. This contrasts with the well-studied Humicula insolens cutinase which preferentially liberates terminal benzoic acid from 3PET.  相似文献   

11.
The primary anti-NP response in C57BL/6 and CBA mice was analyzed by isoelectric focusing. Antibody responses in C57 mice were restricted in heterogeneity and over 80 % of this strain shared an isoelectric focusing spectrum characteristic of an homogeneous antibody (spectrotype). This spectrotype N-l was inherited as a dominant characteristic in (CBA×C57)F1 mice, and backcross analysis revealed that it was genetically linked to the heavy chain allotypeIg-1 b . It thus behaved as a marker similar to the fine specificity characteristic of heteroclitic antibody. Elution studies showed that antibody with the spectrotype N-1 was heteroclitic, with a higher affinity for NIP and NNP than for the immunogen NP. It is argued that a) a single germ-lineV gene (designated N-1) codes for the VH region of this antibody and b) in C57BL/6 mice this geneV H N-1 is closely linked toIg-1 b .Abbreviations BSA bovine serum albumin - CG Chicken globulin - NP (4-Hydroxy-3-nitrophenyl)acetyl - NIP (4-Hydroxy-5-iodo-3-nitrophenyl)acetyl - NBrP (4 Hydroxy-5-bromo-3-nitrophenyl)acetyl - NNP (4-Hydroxy-3,5-dinitrophenyl)acetyl - NIP-Cap NIP-aminocaproate - I50 Hapten concentration causing 50% inhibition of antigen binding - SRC Sheep red cells - IEF Isoelectric focusing - PBS Phosphate buffered saline, pH 7.4  相似文献   

12.
β-1,4-Galactanases belong to glycoside hydrolase family GH 53 and degrade galactan and arabinogalactan side chains of the complex pectin network in plant cell walls. Two fungal β-1,4-galactanases from Aspergillus aculeatus, Meripileus giganteus and one bacterial enzyme from Bacillus licheniformis have been kinetically characterized using the chromogenic substrate analog 4-nitrophenyl β-1,4-d-thiogalactobioside synthesized by the thioglycoligase approach. Values of kcat/Km for this substrate with A. aculeatus β-1,4-galactanase at pH 4.4 and for M. giganteus β-1,4-galactanase at pH 5.5 are 333 M−1 s−1 and 62 M−1 s−1, respectively. By contrast the B. licheniformis β-1,4-galactanase did not hydrolyze 4-nitrophenyl β-1,4-d-thiogalactobioside. The different kinetic behavior observed between the two fungal and the bacterial β-1,4-galactanases can be ascribed to an especially long loop 8 observed only in the structure of B. licheniformis β-1,4-galactanase. This loop contains substrate binding subsites −3 and −4, which presumably cause B. licheniformis β-1,4-galactanase to bind 4-nitrophenyl -1,4-β-d-thiogalactobioside non-productively. In addition to their cleavage of 4-nitrophenyl -1,4-β-d-thiogalactobioside, the two fungal enzymes also cleaved the commercially available 2-nitrophenyl-1,4-β-d-galactopyranoside, but kinetic parameters could not be determined because of transglycosylation at substrate concentrations above 4 mM.  相似文献   

13.
Acetyl xylan esterase (AXE) from basidiomycete Coprinopsis cinerea Okayama 7 (#130) was functionally expressed in Pichia pastoris with a C-terminal tag under the alcohol oxidase 1 (AOX1) promoter and secreted into the medium at 1.5 mg l?1. Its molecular mass was estimated to be 65.5 kDa based on the SDS-PAGE analysis, which is higher than the calculated molecular mass of 40 kDa based on amino acid composition. In-silico analysis of the amino acid sequence predicted two potential N-glycosylation sites. Results from PNGase F deglycosylation and mass spectrum confirmed the presence of N-glycosylation on the recombinant AXE with predominant N-glycans HexNAc2Hex9–16. The recombinant AXE showed best activity at 40 °C and pH 8. It showed not only acetyl esterase activity with a Km of 4.3 mM and a Vmax of 2.15 U mg?1 for hydrolysis of 4-nitrophenyl acetate but also a butyl esterase activity for hydrolysis of 4-nitrophenyl butyrate with a Km of 0.11 mM and Vmax of 0.78 U mg?1. The presence of two additional amino acid residues at its native N-terminus was found to help stabilize the enzyme against the protease cleavages without affecting its activity.  相似文献   

14.
A procedure for purifying to homogeneity a microbially produced biocatalyst useful for deblocking intermediates in the manufacture of beta-lactam antibiotics is reported. In aqueous solution the purifiedp-nitrobenzyl (PNB) carboxy-esterase was soluble, monomeric (molecular weight: 54 000 by SDS-PAGE or by gel filtration) and exhibited an acidic pl, 4.1. The PNB carboxy-esterase catalyzed rapid ester hydrolysis for simple organic esters such as PNB-acetate, benzyl acetate and -naphthyl acetate and catalyzed deblocking (ester hydrolysis) of beta-lactam antibiotic PNB esters such as cephalexin-PNB and loracarbef-PNB. TheN-terminal amino acid sequence and the amino acid composition are reported. A serine residue is involved in ester hydrolysis: the PNB carboxy esterase was inhibited by phenylmethylsulfonyl fluoride and diethylp-nitrophenyl phosphate; one mole of diisopropyl fluorophosphate titration was required per mole of PNB carboxy-esterase for complete inhibition. When the [3H]-diisopropyl fluorophosphate-treated biocatalyst was digested with Lys C and the resulting peptides separated by HPLC, a single [3H]-labeled peptide was obtained; its amino acid sequence is reported. Inhibition of the PNB carboxy esterase by diethyl pyrocarbonate suggests that a histidinyl residue (or residues) is (are) also involved in the catalytic site of the esterase.Abbreviations used -ME -mercaptoethanol - Cf cefaclor - Cf nucleus-PNB - (6R, 7R) 7-amino-3-chloro-8-oxo-5-thia-1-azabicyclo[4.2.0]-oct-2-ene-2-carboxylic acid, (4-nitrophenyl)methyl ester - Cp cephalexin - Cp-PNB p-nitrobenzyl carboxy-ester of cephalexin - DEPC diethyl, pyrocarbonate - DFP diisopropyl fluorophosphate - DMSO dimethyl sulfoxide - DNP diethylp-nitrophenyl phosphate - EDTA ethylenediaminetetraacetic acid - EGTA ethylene, glycol-bis(aminoethyl ether) - N,N,NN tetracetic acid - Lc loracarbef - Lc-PNB p-nitrobenzyl carboxy-ester of loracarbef - Lc nucleus-PNB - (6R, 7S) 7-amino-3-chloro-8-oxo-1-azabicyclo[4.2.0]-oct-2-ene-2-carboxylic acid, (4-nitrophenyl)methyl ester - Lys C an endoproteinase specifically cleaving at C terminal lysine residues - MWr relative molecular weight - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonylfluoride - PNB p-nitrobenzyl - PNBCE p-nitrobenzyl carboxy-esterase - SDS sodium dodecyl sulfate  相似文献   

15.
The influence of Ca homoionic clay minerals (montmorillonite, illite, and kaolinite) on the activity,K m , andV m values of acid phosphatase was examined in model experiments. At each substrate (p-nitrophenyl phosphate) level tested, the addition of increasing amounts of clays (50, 100, and 150 mg, respectively) decreased the activity and increased theK m value from 1.43×10–3 m PNP (in the soluble state) to 82.3×10–3M (montmorillonite), 8.02×10–3 m (kaolinite), and 7.65×10–3 m (illite) at the 150 mg level. The maximum enzyme reaction velocity (V m ) remained nearly constant at different amounts of kaolinite and illite, but increased remarkably with rising quantities of montmorillonite. Apparently, the substrate affinity of sorbed acid phosphatase is significantly lower with montmorillonite than with kaolinite or illite. This may be ascribed to an intensive sorption of both substrate and enzyme to the surface as well as to interlattice sites of montmorillonite.  相似文献   

16.
A clone which conferred lipolytic activity at low temperature was identified from a fosmid library constructed from a South China Sea marine sediment sample. The gene responsible, estF, consisted of 1,080 bp that encoded 359 amino acid residues, with a typical N-terminal signal peptide of 28 amino acid residues. A phylogenetic analysis of amino acid sequence with other lipolytic enzymes revealed that EstF and seven closely related putative lipolytic enzymes comprised a unique clade in the phylogenetic tree. Moreover, these hypothetic esterases showed unique conservative sites in the amino acid sequence. The recombinant EstF was overexpressed and purified, and its biochemical properties were partially characterized. The optimal substrate for EstF to hydrolyze among a panel of p-nitrophenyl esters (C2 to C16) was p-nitrophenyl butyrate (C4), with a K m of 0.46 mM. Activity quickly decreased with substrates containing an acyl chain length longer than 10 carbons. We found that EstF was active in the temperature range of 0–60°C, showed the best activity at 50°C, but was unstable at 60°C. It exhibited a high level of activity in the pH range of 7.0–10.0 showing the highest activity at pH 9.0.  相似文献   

17.
Arylsulfotransferase catalyzes the transfer of a sulfate group from 3-phosphoadenosine-5-phosphosulfate (PAPS) to a phenolic acceptor substrate. We discovered a novel type of sulfotransferase from an anaerobic bacterium of human intestine, Eubacterium A-44. In the bacterial enzyme PAPS did not serve as a donor and all alcohols did not as acceptors. The new arylsulfotransferase was purified 185-fold from a crude extract of sonicated bacteria to homogeneity. The enzyme (MW 315 kd) was composed of four identical subunits (MW 80 kd) whose N-terminal amino acid was arginine, and its optimal pH and pI were 8–9 and 3.9, respectively. The enzyme catalyzed stoichiometric transfer of a sulfate group from a phenol sulfate ester to other phenols, with strict specificity. With tyramine as an acceptor, p-acetylphenyl sulfate was the best donor, followed by 4-methylumbelliferyl sulfate and p-nitrophenyl sulfate. With p-nitrophenyl sulfate as a donor, naphthol was the best acceptor, followed by estradiol, phenol, tyrosine methylester, tyramine, and epinephrine in decreasing order. Only the 4-position of catecholamines was specifically sulfated. Naturally occurring phenolic compounds, such as flavone, chalcone, and xanthone, were sulfated as well. Tyrosine-containing peptides were enzymatically sulfated: enkephalin, LH-RH, vasopressin, angiotensins, proctorin, CCK-8, and phyllocaerulein were sulfated with high yields. The novel sulfotransferase is expected to be applicable to enzymatic O-sulfation of tyrosine-containing hormones. The 35S-labeled sulfate group from (35S)p-nitrophenyl sulfate was incorporated into a tyrosyl residue at the active site of the enzyme (2 mole 35S/mole of enzyme). The enzyme was inactivated by diethylpyrocarbamate and TLCK, chemical modifying agents for a histidyl residue. The reaction mechanism of arylsulfotransferase was proposed as follows: a donor substrate combines a histidyl residue with concomitant release of a phenolic compound. The sulfate group of the histidyl residue transfers to a tyrosyl residue, and then to an acceptor with the binding of another donor substrate to the histidyl residue.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

18.
β-xylosidase from thermophilic fungi Paecilomyces thermophila was functionally expressed in Pichia pastoris with a his tag in the C-terminal under the alcohol oxidase 1 (AOX1) promoter and secreted into the medium at 0.22 mg l?1. Its molecular mass was estimated to be 52.3 kDa based on the SDS-PAGE analysis, which is 1.3 times higher than the predicted 39.31 kDa from its amino acid compositions, although no potential N- or O- glycosylation sites were predicted from its amino acid sequence. This is presumed to be caused by some unpredictable posttranslational modifications based on mass spectrum analysis of the recombinant protein. The enzyme was most active at 60 °C and pH 7. It showed not only a β-xylosidase activity with a Km of 8 mM and a Vmax of 54 μmol min?1 mg?1 for hydrolysis of p-nitrophenyl β-d-xylopyranoside but also an arabinofuranosidase activity (6.2 U mg?1) on p-nitrophenyl arabinofuranoside.  相似文献   

19.
EstA was purified from the supernatant by A. lwoffii 16C-1. Its molecular mass was determined to be 45 kDa, and the optimal activity occurred when the pH level was 8.0 at a temperature of 37°C. The activation energies for the hydrolysis of p-nitrophenyl butyrate was determined to be 11.25 kcal/mol in the temperature range of 10–37°C. The enzyme was unstable at temperatures higher than 50°C. The Michaelis constant (K m ) and V max for p-nitrophenyl butyrate were 11 μM and 131.6 μM min−1 mg of protein-1, respectively. The enzyme was strongly inhibited by Hg2−, Ca2+, Mg2+, Fe2+, Cu2+, Zn2+, Mn2+, Co2+, ethylemediaminetetraacetic acid (EDTA), phenylmethylsulfonyl fluoride (PMSF), and diisopropyl fluorophosphate (DFP). Received: 20 August 2001 / Accepted: 20 September 2001  相似文献   

20.
A new lipase gene designated as SlLipA was isolated from Serratia liquefaciens S33 DB-1 by the genomic-walking method. The cloned gene contained an open reading frame (ORF) of 1,845 bp encoding 615 amino acids with a conserved GXSXG motif. Genome sequence analysis showed that an aldo/keto reductase gene closed to the SlLipA gene. The lipase gene was cloned into the expression vector pPICZαA and successfully integrated into the heterologous host, methylotrophic yeast Pichia pastoris GS115. Five transformants could be expressed as secreted recombinant proteins with the high activity on Triglyceride–Agarose plate and as candidates to produce the recombinant enzyme. A C-terminal His tag was used for its purification. The lipase activity of different transformants against substrate para-nitrophenyl laurate (p-NPL) varied from 14 to 16 U ml−1. For the substrates para-nitrophenyl caprate (p-NPC), p-NPL, para-nitrophenyl myristate (p-NPM), para-nitrophenyl palmitate (p-NPP), and para-nitrophenyl stearate (p-NPS), the specific activity was shown to be preferred to long acyl chain length of p-NPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号