首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
AIM: This study examined the electromyographic (EMG) activity of knee extensor agonists and a knee extensor antagonist muscle during fatiguing isometric extensions across a range of force levels. METHODS: Five female subjects performed isometric knee extensions at 25%, 50%, 75% and 100% of their maximal voluntary contraction (MVC) with the knee flexed to 75 degrees. Surface EMG (SEMG) was recorded with bipolar electrodes from the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF) and the root-mean-squared (RMS) amplitude and the percentage frequency compression of these recordings were calculated. Commonality and cross talk between recordings were also examined. RESULTS: Cross talk between recordings was deemed negligible despite significant levels of commonality between the agonist and antagonist SEMG, which was attributed to common drive. SEMG RMS amplitude increased significantly for all muscles during the 25%, 50%, 75% MVC knee extensions until task failure, and decreased significantly for 100% MVC. The frequency spectrum of the SEMG compressed significantly for all muscles and % MVC levels. The VM, VL and BF SEMG recordings responded similarly to fatigue. The RF's frequency spectrum compressed to a significantly higher degree. CONCLUSIONS: The VM, VL, RF, and BF fatigue in parallel, with high similarity between VM, VL and BF, giving support to the concept of a shared agonist-antagonist motoneuron pool.  相似文献   

2.
Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 +/- 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 +/- 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 +/- 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 +/- 5.3%), but it ended at a similar value (45.4 +/- 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003).  相似文献   

3.
Different behaviours of the EMG power spectrum across increasing force levels have been reported for the masseter muscle. A factor that could explain these different behaviours may be the type of contraction used, as was recently shown for certain upper limb muscles5. The purpose of this study was to compare, between two types of isometric contractions, the behaviour of EMG power spectrum statistics (median frequency (MF) and mean power frequency (MPF)) obtained across increasing force levels. Ten women exerted, while biting in the intercuspal position, three 5 s ramp contractions that increased linearly from 0 to 100% of the maximal voluntary contraction (MVC). They also completed three step contractions (constant EMG amplitude) at each of the following levels: 20, 40, 60 and 80% MVC. EMG signals from the masseter muscle were recorded with miniature surface electrodes. The RMS, as well as the MPF and MF of the power spectrum were calculated at 20, 40, 60 and 80% MVC for each type of contraction. As expected, the RMS values showed similar increases with increasing levels of effort for both types of contractions. Different behaviours for both MPF (contraction*force interaction, ANOVA, P<0.05) and MF (contraction*force interaction, ANOVA, P>0.05) across increasing levels of effort were found between the two types of contraction. The use of step contractions gave rise to a decrease of both MPF and MF with increasing force, while the use of ramp contractions gave rise to an increase in both statistics up to at least 40% MVC followed by a decrease at higher force levels. These findings suggest that the type of contraction used does influence the behaviour of the spectral statistics across increasing force levels and that this could explain the differences obtained in previous studies for the masseter muscle.  相似文献   

4.
The purposes of this study were to examine the mechanomyographic (MMG) and electromyographic (EMG) time and frequency domain responses of the vastus lateralis (VL) and rectus femoris (RF) muscles during isometric ramp contractions and compare the time-frequency of the MMG and EMG signals generated by the short-time Fourier transform (STFT) and continuous wavelet transform (CWT). Nineteen healthy subjects (mean+/-SD age=24+/-4 years) performed two isometric maximal voluntary contractions (MVCs) before and after completing 2-3, 6-s isometric ramp contractions from 5% to 100% MVC with the right leg extensors. MMG and surface EMG signals were recorded from the VL and RF muscles. Time domains were represented as root mean squared amplitude values, and time-frequency representations were generated using the STFT and CWT. Polynomial regression analyses indicated cubic increases in MMG amplitude, MMG frequency, and EMG frequency, whereas EMG amplitude increased quadratically. From 5% to 24-28% MVC, MMG amplitude remained stable while MMG frequency increased. From 24-28% to 76-78% MVC, MMG amplitude increased rapidly while MMG frequency plateaued. From 76-78% to 100% MVC, MMG amplitude plateaued (VL) or decreased (RF) while MMG frequency increased. EMG amplitude increased while EMG frequency changed only marginally across the force spectrum with no clear deflection points. Overall, these findings suggested that MMG may offer more unique information regarding the interactions between motor unit recruitment and firing rate that control muscle force production during ramp contractions than traditional surface EMG. In addition, although the STFT frequency patterns were more pronounced than the CWT, both algorithms produced similar time-frequency representations for tracking changes in MMG or EMG frequency.  相似文献   

5.
To determine quantitatively the features of alternate muscle activity between knee extensor synergists during low-level prolonged contraction, a surface electromyogram (EMG) was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) in 11 subjects during isometric knee extension exercise at 2.5% of maximal voluntary contraction (MVC) for 60 min (experiment 1). Furthermore, to examine the relation between alternate muscle activity and contraction levels, six of the subjects also performed sustained knee extension at 5.0, 7.5, and 10.0% of MVC (experiment 2). Alternate muscle activity among the three muscles was assessed by quantitative analysis on the basis of the rate of integrated EMG sequences. In experiment 1, the number of alternations was significantly higher between RF and either VL or VM than between VL and VM. Moreover, the frequency of alternate muscle activity increased with time. In experiment 2, alternating muscle activity was found during contractions at 2.5 and 5.0% of MVC, although not at 7.5 and 10.0% of MVC, and the number of alternations was higher at 2.5 than at 5.0% of MVC. Thus the findings of the present study demonstrated that alternate muscle activity in the quadriceps muscle 1) appears only between biarticular RF muscle and monoarticular vasti muscles (VL and VM), and its frequency of alternations progressively increases with time, and 2) emerges under sustained contraction with force production levels < or =5.0% of MVC.  相似文献   

6.
The purpose of this study was to examine the effect of graded conditioning contractions of the antagonist knee flexor muscles on the output characteristics of knee extensor muscles in healthy humans. Eight male university students performed maximum isometric contractions of knee extensors, preceded by isometric conditioning contractions of the antagonist knee flexors. The developed force and electromyographic (EMG) amplitudes of the knee extensors after the conditioning contraction were measured and compared with those of simple knee extension without conditioning. The forces of the conditioning flexor contraction were set at three levels: low (20% of maximum voluntary contraction: MVC), moderate (60% of MVC), and high (100% of MVC). The EMG amplitudes of the vastus medialis, vastus lateralis, and rectus femoris muscle were recorded and the root mean square amplitudes were calculated. The strongest enhancement of the extension force was obtained by moderate intensity conditioning contraction (108.95+/-1.87% of simple knee extension), although high intensity conditioning also induced a significant increase (105.41+/-2.69%). Low intensity conditioning did not cause a significant enhancement of the contraction force (103.17+/-2.99%). Similarly, the EMG amplitudes were significantly increased by moderate and/or high conditioning. These results suggest that antagonist conditioning contraction of moderate intensities is sufficient and may be optimal to potentiate knee extensor contraction.  相似文献   

7.
The purpose of this study was to investigate neuromuscular activation of the vastus intermedius (VI) muscle during fatiguing contraction. Seven healthy men performed sustained isometric knee extension exercise at 50% of maximal voluntary contraction until exhaustion. During the fatiguing task, surface electromyograms (EMGs) were recorded from four muscle components of the quadriceps femoris muscle group: VI; vastus lateralis (VL); vastus medialis (VM); and rectus femoris (RF) muscles. For the VI muscle, our recently developed technique was used. Root mean square (RMS) and median frequency (MF) of the surface EMG signal were calculated and these variables were then normalized by the value at the beginning of the task. Normalized RMS of the VI muscle resembled those of the other three muscles at all given times. At 95% of exhaustion time, normalized MF of the VI muscle was significantly higher than that of the VL muscle (p < 0.05). These results suggested that neuromuscular activation is not consistent between the VI and VL muscles at the exhaustion for isometric submaximal contraction and this could reflect the dissimilar intramuscular metabolism between these muscles.  相似文献   

8.
The purpose of this study was to determine whether surface electromyography (EMG) assessment of myoelectric manifestations of muscle fatigue is capable of detecting differences between the vastus lateralis and medialis muscles which are consistent with the results of previous biopsy studies. Surface EMG signals were recorded from the vastus medialis longus (VML), vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during isometric knee extension contractions at 60% and 80% of the maximum voluntary contraction (MVC) for 10 s and 60 s, respectively. Initial values and rate of change of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. Comparisons between the two force levels revealed that the initial values of MNF for the VL muscle were greater at 80% MVC compared to 60% MVC (P < 0.01). Comparisons between the vasti muscles demonstrated lower initial values of CV for VMO compared to VL at 60% MVC (P < 0.01) and lower than VML and VL at 80% MVC (P < 0.01). In addition, initial values of MNF were higher for VL with respect to both VML and VMO at 80% MVC (P < 0.01) and initial estimates of ARV were higher for VMO compared to VML at both force levels (P < 0.01 at 60% MVC and P < 0.05 at 80% MVC). For the sustained contraction at 80% MVC, VL demonstrated a greater decrease in CV over time compared to VMO (P < 0.05).These findings suggest that surface EMG signals and their time course during sustained isometric contractions may be useful to non-invasively describe functional differences between the vasti muscles.  相似文献   

9.
The continuous wavelet transform (CWT), a time-frequency method, was used when calculating mean frequency of the power spectrum (MNF) and signal amplitude (RMS) of the surface EMG to investigate their relationships to force during a gradually increasing knee extension (ramp). Based upon the CWT, MNF was redefined to include time dependence on the EMG signal frequency contents, the short-time MNF (STMNF). Surface EMG was recorded from vastus lateralis, rectus femoris and vastus medialis in 21 clinically healthy subjects during a brief, gradually increasing contraction up to 100% of a maximum voluntary contraction (MVC), with a duration of approximately 10 s. The relationships between the EMG variables and force using linear regression were determined for each subject. For vastus lateralis, we also investigated if certain aspects of the muscle morphology (i.e., proportions and areas of different fibre types) influenced the EMG-force relationship.For the majority of subjects (17-18 out of 21 subjects) there were significant positive correlations between STMNF and force in the three muscles. No sex differences were found in intercepts or regression coefficients of STMNF. The muscle morphology had a significant influence on the STMNF-force intercept and the regression coefficient. Positive and highly significant linear correlations between RMS and force were found for all subjects and all three muscles.In conclusion, time frequency methods can be applied when investigating EMG during brief contractions associated with non-stationarity. In a great majority of the subjects, and in the three muscles, significant linear force dependencies were found for STMNF. Thus, when evaluating muscle fatigue, e.g., in ergonomic situations, it is important to consider the force level as one factor that can influence the results. Morphological variables (fibre proportions and fibre areas) influenced the STMNF-force relationship in vastus lateralis.  相似文献   

10.
The aim of the study was to investigate EMG signal features during fatigue and recovery at three locations of the vastus medialis and lateralis muscles. Surface EMG signals were detected from 10 healthy male subjects with six 8-electrode arrays located at 10%, 20%, and 30% of the distance from the medial (for vastus medialis) and lateral (vastus lateralis) border of the patella to the anterior superior spine of the pelvic. Subjects performed contractions at 40% and 80% of the maximal force (MVC) until failure to maintain the target force, followed by 20 2-s contractions at the same force levels every minute for 20 min (recovery). Average rectified value, mean power spectral frequency, and muscle fiber conduction velocity were estimated from the EMG signals in 10 epochs from the beginning of the contraction to task failure (time to task failure, mean ± SD, 70.7 ± 25.8 s for 40% MVC; 27.4 ± 16.8 s for 80% MVC) and from the 20 2 s time intervals during recovery. During the fatiguing contraction, the trend over time of EMG average rectified value depended on location for both muscles (P < 0.05). After 20-min recovery, mean frequency and conduction velocity of both muscles were larger than in the beginning of the fatigue task (P < 0.05) (supernormal values). Moreover, the trend over time of mean frequency during recovery was affected by location and conduction velocity values depended on location for both muscles (P < 0.05). The results indicate spatial dependency of EMG variables during fatigue and recovery and thus the necessity of EMG spatial sampling for global muscle assessment.  相似文献   

11.
The goal of the present study was to compare electromyogram (EMG) power spectra obtained from step (constant force level) and ramp (progressive increase in the force level) isometric contractions. Data windows of different durations were also analysed for the step contractions, in order to evaluate the stability of EMG power spectrum statistics. Fourteen normal subjects performed (1) five ramp elbow extensions ranging from 0 to 100% of the maximum voluntary contraction (MVC) and (2) three stepwise elbow extensions maintained at five different levels of MVC. Spectral analysis of surface EMG signals obtained from triceps brachii and anconeus was performed. The mean power frequency (MPF) and the median frequency (MF) of each power spectrum were obtained from 256-ms windows taken at 10, 20, 40, 60 and 80% MVC for each type of contraction and in addition on 512-, 1024- and 2048-ms windows for the step contractions. No significant differences (P greater than 0.05) were found in the values of both spectral statistics between the different window lengths. Even though no significant differences (P greater than 0.05) were found between the ramp and the step contractions, significant interactions (P less than 0.05) between these two types of contraction and the force level were found for both the MPF and the MF data. These interactions point out the existence of different behaviours for both the MPF and the MF across force levels between the two types of contraction.  相似文献   

12.
To investigate the behavior of mechanomyogram (MMG) and electromyogram (EMG) signals in the time and frequency domains during sustained isometric contraction, MMG and surface EMG were obtained simultaneously from four muscles: upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR) of 10 healthy male subjects. Experimental conditions consisted of 27 combinations of 9 postures [3 shoulder angles (SA): 0 degree, 30 degrees, 60 degrees and 3 elbow angles (EA): 120 degrees, 90 degrees, 60 degrees] and 3 contraction levels: 20%, 40%, and 60% of maximum voluntary contraction (MVC). Subjective evaluations of fatigue were also assessed using the Borg scale at intervals of 60, 30, and 10 sec at 20%, 40%, and 60% MVC tests, respectively. The mean power frequency (MPF) and root mean square (RMS) of both signals were calculated. The current study found clear and significant relationships among physiological and psychological parameters on the one hand and SA and EA on the other. EA's effect on MVC was found to be significant. SA had a highly significant effect on both endurance time and Borg scale. In all experimental conditions, significant correlations were found between the changes in MPF and RMS of EMG in BB with SA and EA (or muscle length). In all four muscles, MMG frequency content was two or three times lower than EMG frequency content. During sustained isometric contraction, the EMG signal showed the well-known shift to lower frequencies (a continuous decrease from onset to completion of the contraction). In contrast, the MMG spectra did not show any shift, although its form changed (generally remaining about constant). Throughout the contraction, increased RMS of EMG was found for all tests, whereas in the MMG signal, a significant progressive increase in RMS was observed only at 20% MVC in all four muscles. This supports the hypothesis that the RMS amplitude of the MMG signal produced during contraction is highly correlated with force production. Possible explanations for this behavioral difference between the MMG and EMG signals are discussed.  相似文献   

13.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

14.
The aim of this study was to compare mechanomyogram (MMG) recorded by a condenser microphone (MIC) and an accelerometer (ACC) during submaximal isometric, concentric and eccentric contractions in 14 males. The maximal voluntary force (MVC) of the biceps brachii was measured. The subjects were asked to do short duration isometric, concentric and eccentric contraction at 10%, 30%, 50%, 70% MVC twice. For the concentric and eccentric contraction, the subject bent his arm for 3s (concentric) then held it for 3s and extended (eccentric) during 3s. The normalized root mean square (RMS) and mean power frequency (MPF) increased linearly with increased force for both transducers. There was a correlation between MIC MPF and ACC MPF at 10%, 30%, 50% MVC, and between MIC RMS and ACC RMS at 30% MVC during isometric contractions. There was significantly higher MPF for the ACC than for the MIC in concentric and eccentric modes, while the RMS did not differ among transducers in the three contraction modes. The RMS and MPF values coefficient of variations were significantly larger during anisometric contractions compared with isometric contractions and were lower for the accelerometer than for the microphone. The present results obtained during isometric, concentric and eccentric contractions of increased intensity showed that the information contained in microphone- and accelerometer-based MMG signals is different despite similar trends. It can be concluded that at low-moderate movement velocity, concentric contractions can be investigated by means of accelerometer and microphone.  相似文献   

15.
The repeatability of initial values and rate of change of EMG signal mean spectral frequency (MNF), average rectified values (ARV), muscle fiber conduction velocity (CV) and maximal voluntary contraction (MVC) was investigated in the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles of both legs of nine healthy male subjects during voluntary, isometric contractions sustained for 50 s at 50% MVC. The values of MVC were recorded for both legs three times on each day and for three subsequent days, while the EMG signals have been recorded twice a day for three subsequent days. The degree of repeatability was investigated using the Fisher test based upon the ANalysis Of VAriance (ANOVA), the Standard Error of the Mean (SEM) and the Intraclass Correlation Coefficient (ICC).

Data collected showed a high level of repeatability of MVC measurement (normalized SEM from 1.1% to 6.4% of the mean). MNF and ARV initial values also showed a high level of repeatability (ICC>70% for all muscles and legs except right VMO). At 50% MVC level no relevant pattern of fatigue was observed for the VMO and VL muscles, suggesting that other portions of the quadriceps might have contributed to the generated effort. These observations seem to suggest that in the investigation of muscles belonging to a multi-muscular group at submaximal level, the more selective electrically elicited contractions should be preferred to voluntary contractions.  相似文献   


16.
To determine the non-uniform surface mechanical activity of human quadriceps muscle during fatiguing activity, surface mechanomyogram (MMG), or muscle sound, and surface electromyogram (EMG) were recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles of seven subjects during unilateral isometric knee extension exercise. Time- and frequency-domain analyses of MMG and of EMG fatigued by 50 repeated maximal voluntary contractions (MVC) for 3 s, with 3-s relaxation in between, were compared among the muscles. The mean MVC force fell to 49.5 (SEM 2.0)% at the end of the repeated MVC. Integrated EMG decreased in a similar manner in each muscle head, but a marked non-uniformity was found for the decline in integrated MMG (iMMG). The fall in iMMG was most prominent for RF, followed by VM and VL. Moreover, the median frequency of MMG and the relative decrease in that of EMG in RF were significantly greater (P < 0.05) than those recorded for VL and VM. These results would suggest a divergence of mechanical activity within the quadriceps muscle during fatiguing activity by repeated MVC. Accepted: 19 January 1999  相似文献   

17.
The objective of this study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during fatiguing knee extensions. Thirty young adults were evaluated for their one-repetition maximum (1RM) during a seated, right-leg, inertial knee extension. All subjects then completed a single set of repeated knee extensions at 50% 1RM, to failure. Subjects performed a knee extension (concentric phase), held the weight with the knee extended for 2s (isometric phase), and lowered the weight in a controlled manner (eccentric phase). Raw EMG of the vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscles were full-wave rectified, integrated and normalized to the 1RM EMG, for each respective phase and repetition. The EMG median frequency (f(med)) was computed during the isometric phase. An increase in QF muscle EMG was observed during the concentric phase across the exercise duration. VL EMG was greater than the VM and RF muscles during the isometric phase, in which no significant changes occurred in any of the muscles across the exercise duration. A significant decrease in EMG across the exercise duration was observed during the eccentric phase, with the VL EMG greater than the VM and RF muscles. A greater decrease in VL and RF muscle f(med) during the isometric phase, than the VM muscle, was observed with no gender differences. The findings demonstrated differential recruitment of the superficial QF muscle, depending on the contraction mode during dynamic knee extension exercise, where VL muscle dominance appears to manifest across the concentric-isometric-eccentric transition.  相似文献   

18.
Alternate muscle activity between synergist muscles has been demonstrated during low-level sustained contractions [< or =5% of maximal voluntary contraction (MVC) force]. To determine the functional significance of the alternate muscle activity, the association between the frequency of alternate muscle activity during a low-level sustained knee extension and the reduction in knee extension MVC force was studied. Forty-one healthy subjects performed a sustained knee extension at 2.5% MVC force for 1 h. Before and after the sustained knee extension, MVC force was measured. The surface electromyogram was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles. The frequency of alternate muscle activity for RF-VL, RF-VM, and VL-VM pairs was determined during the sustained contraction. The frequency of alternate muscle activity ranged from 4 to 11 times/h for RF-VL (7.0 +/- 2.0 times/h) and RF-VM (7.0 +/- 1.9 times/h) pairs, but it was only 0 to 2 times/h for the VL-VM pair (0.5 +/- 0.7 times/h). MVC force after the sustained contraction decreased by 14% (P < 0.01) from 573.6 +/- 145.2 N to 483.3 +/- 130.5 N. The amount of reduction in MVC force was negatively correlated with the frequency of alternate muscle activity for the RF-VL and RF-VM pairs (P < 0.001 and r = 0.65 for both) but not for the VL-VM pair. The results demonstrate that subjects with more frequent alternate muscle activity experience less muscle fatigue. We conclude that the alternate muscle activity between synergist muscles attenuates muscle fatigue.  相似文献   

19.
20.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号