首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Enzyme-membrane electrodes using glucose oxidase in combination with peroxide detection dominate in the field of laboratory analyzers for diluted samples. Using the same indication principle, extremely fast responding glucose sensors have been fabricated by covering thin metal electrodes with a porous enzyme layer. In the second generation auxiliary enzymes and/or co-reactants are coimmobilized with the analyte converting enzyme in order to improve the analytical quality and to simplify the performance. Following this line oxidizable interferences are suppressed by using a glucose oxidase/peroxidase complex which communicates with the electrode at a low working potential. Furthermore, fluctuations of pH or buffer capacity are ineffective when using a glucose oxidase/peroxidase layer covered fluoride FET in the potentiometric glucose determination. Enzymatic recycling of the analyte and/or accumulation of intermediates increase the sensitivity by several orders of magnitude. Inclusion of NAD bound to PEG in the glucose dehydrogenase layer allows a reagentless glucose measurement.  相似文献   

3.
We show that structural protein arrays consisting largely of collagen, myosin, and tubulin, and their associated proteins can be imaged in three dimensions with high contrast and resolution by laser-scanning second harmonic generation (SHG) microscopy. SHG is a nonlinear optical scheme and this form of microscopy shares several common advantages with multiphoton excited fluorescence, namely, intrinsic three-dimensionality and reduced out-of-plane photobleaching and phototoxicity. SHG does not arise from absorption and in-plane photodamage considerations are therefore also greatly reduced. In particular, structural protein arrays that are highly ordered and birefringent produce large SHG signals without the need for any exogenous labels. We demonstrate that thick tissues including muscle and bone can be imaged and sectioned through several hundred micrometers of depth. Combining SHG with two-photon excited green fluorescent protein (GFP) imaging allows inference of the molecular origin of the SHG contrast in Caenorhabditis elegans sarcomeres. Symmetry and organization of microtubule structures in dividing C. elegans embryos are similarly studied by comparing the endogenous tubulin contrast with that of GFP::tubulin fluorescence. It is found that SHG provides molecular level data on radial and lateral symmetries that GFP constructs cannot. The physical basis of SHG is discussed and compared with that of two-photon excitation as well as that of polarization microscopy. Due to the intrinsic sectioning, lack of photobleaching, and availability of molecular level data, SHG is a powerful tool for in vivo imaging.  相似文献   

4.
Second harmonic generation (SHG) microscopy is an important optical imaging technique in a variety of applications. This article describes the history and physical principles of SHG microscopy and its more advanced variants, as well as their strengths and weaknesses in biomedical applications. It also provides an overview of SHG and advanced SHG imaging in neuroscience and microtubule imaging and how these methods can aid in understanding microtubule formation, structuration, and involvement in neuronal function. Finally, we offer a perspective on the future of these methods and how technological advancements can help make SHG microscopy a more widely adopted imaging technique.  相似文献   

5.
Potent and efficacious inhibitors of the hedgehog pathway for the treatment of cancer have been prepared using the 2-pyridyl biphenyl amide scaffold common to the clinical lead GDC-0449. Analogs with polar groups in the para-position of the aryl amide ring optimized potency, had minimal CYP inhibition, and possessed good exposure in rats. Compounds 9d and 14f potently inhibited hedgehog signaling as measured by Gli1 mRNA and were found to be equivalent or more potent than GDC-0449, respectively, when studied in a Ptch+/? medulloblastoma allograft model, that is, highly dependent on hedgehog signaling.  相似文献   

6.
Second-harmonic generation (SHG) microscopy has emerged as a powerful modality for imaging fibrillar collagen in a diverse range of tissues. Because of its underlying physical origin, it is highly sensitive to the collagen fibril/fiber structure, and, importantly, to changes that occur in diseases such as cancer, fibrosis and connective tissue disorders. We discuss how SHG can be used to obtain more structural information on the assembly of collagen in tissues than is possible by other microscopy techniques. We first provide an overview of the state of the art and the physical background of SHG microscopy, and then describe the optical modifications that need to be made to a laser-scanning microscope to enable the measurements. Crucial aspects for biomedical applications are the capabilities and limitations of the different experimental configurations. We estimate that the setup and calibration of the SHG instrument from its component parts will require 2-4 weeks, depending on the level of the user's experience.  相似文献   

7.
8.
Second harmonic generation (SHG) from membrane-bound chromophores can be used to image membrane potential in neurons. We investigate the biophysical mechanism responsible for the SHG voltage sensitivity of the styryl dye FM 4-64 in pyramidal neurons from mouse neocortical slices. SHG signals are exquisitely sensitive to the polarization of the incident laser light. Using this polarization sensitivity in two complementary approaches, we estimate a approximately 36 degrees tilt angle of the chromophore to the membrane normal. Changes in membrane potential do not affect the polarization of the SHG signal. The voltage response of FM 4-64 is faster than 1 ms and does not reverse sign when imaged at either side of its absorption peak. We conclude that FM 4-64 senses membrane potential through an electro-optic mechanism, without significant chromophore membrane reorientation, redistribution, or spectral shift.  相似文献   

9.
We present a study of the adsorption of the glucose oxidase enzyme (GOx) at the air/water interface, using the nonlinear optical technique of surface second harmonic generation (SSHG). Resonant SSHG experiments were achieved by probing the pi-pi* transition of the flavin adenine dinucleotide (FAD) chromophores embedded in the GOx protein. Because of the subsequent resonance enhancement of the signal, the second harmonic (SH) wave arising from the GOx entities adsorbed at the interface was detectable for protein bulk aqueous concentrations as low as 70 nM. The protein adsorption was followed, and, at high GOx coverage, a change in the orientation of the FAD chromophore was observed, indicating either a rearrangement or a reorientation of the protein at the interface. Inasmuch as GOx is negatively charged at the biological pH of 7, its interactions with charged surfactants were also investigated. As expected, spreading positively charged surfactants onto a partial protein monolayer was found to increase the GOx surface concentration, whereas in the case of negatively charged surfactants, the GOx surface concentration decreased until the SH signal went back to the pure buffer solution response level. With the increasing GOx surface concentration, the rearrangement or reorientation of the protein was also observed.  相似文献   

10.
Previous work from our group described the synthesis and biological evaluation of new rigid, 6,6- and 6,7-spiro aminoglycosidic scaffolds targeting the bacterial ribosome. Herein we describe an improved synthetic protocol for their construction, and extend our study by further amino-functionalization of their 6,7-spiro analogs. The synthetic strategy, preparation and evaluation of some representative examples are reported.  相似文献   

11.
12.
13.
Multiple Sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system (CNS) through demyelination and neurodegeneration. Until recently, major therapeutic treatments have relied on agents requiring injection delivery. In September 2010, fingolimod/FTY720 (Gilenya, Novartis) was approved as the first oral treatment for relapsing forms of MS. Fingolimod causes down-modulation of S1P1 receptors on lymphocytes which prevents the invasion of autoaggressive T cells into the CNS. In astrocytes, down-modulation of S1P1 by the drug reduces astrogliosis, a hallmark of MS, thereby allowing restoration of productive astrocyte communication with other neural cells and the blood brain barrier. Animal data further suggest that the drug directly supports the recovery of nerve conduction and remyelination. In human MS, such mechanisms may explain the significant decrease in the number of inflammatory markers on brain magnetic resonance imaging in recent clinical trials, and the reduction of brain atrophy by the drug. Fingolimod binds to 4 of the 5 known S1P receptor subtypes, and significant efforts were made over the past 5 years to develop next generation S1P receptor modulators and determine the minimal receptor selectivity needed for maximal therapeutic efficacy in MS patients. Other approaches considered were competitive antagonists of the S1P1 receptor, inhibitors of the S1P lyase to prevent S1P degradation, and anti-S1P antibodies. Below we discuss the current status of the field, and the functional properties of the most advanced compounds. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

14.
《Genomics》2020,112(1):286-288
Synteny and collinearity analysis is a standard investigative strategy done in many comparative genomic studies to understand genomic conservation and evolution. Currently, most visualization toolkits of synteny and collinearity do not emphasize the graphical representation of the results, especially the lack of extensible format on vector graphics outputs. This limitation becomes more apparent as 3rd generation sequencing brings high-throughput data, requiring relatively higher resolution for the resulting images. We developed VGSC2, the 2nd version of the web-based vector graph toolkit for genome synteny and collinearity analysis. The updated version enables four types of plots for synteny and collinearity, and three types of plots for gene family evolutionary research. Using web-based technologies, VGSC2 provides an easy-to-use user interface to display the homologous genomic result into vector graphs such as SVG, EPS, and PDF, as well as an online editor. VGSC2 is open source and freely available for use online through the web server available at http://bio.njfu.edu.cn/vgsc2.  相似文献   

15.
A "second generation" of TSAO molecules directed against TSAO-resistant strains have been prepared. The presence of two neighboring carbonyl groups at the 4" position of the 3'-spiro moiety seems to be important for the anti-HIV-1 activity against both wild type and TSAO-resistant strains. NMR conformational studies in solution and theoretical calculations of the novel compounds have also been carried out.  相似文献   

16.
A conceptual extension of the cycloSal-pronucleotide approach is presented. The characteristic feature of the new cycloSal-derivatives of the anti-HIV active nucleoside analogue d4T 1 is the incorporation of an enzymatically cleavable carboxylic ester moiety with the intention to trap the triesters inside cells ("lock-in"-concept). CycloSal-triesters bearing different ester groups in the 3-or 5-position of the cycloSal-moiety are described. Surprisingly, only acetyl-and levulinyl esters are cleaved readily in CEM cell extracts while alkyl esters were found to be stable. Nevertheless, in in-vitro anti-HIV assays most of the compounds achieve the thymidine-kinase bypass, thus proving that they act at least as nucleotide delivery systems.  相似文献   

17.
Differences in the glucose metabolism were examined and analysed in this study between patients treated with olanzapine and risperidone in comparison with healthy volunteers. The aim of the study was to determine differences of the impaired glucose metabolism in the study groups as well as to point out to the possible mechanisms which bring to these differences. To the group of 15 schizophrenic patients treated with olanzapine, and group of 15 schizophrenic patients treated with risperidone and to 14 healthy volunteers oral glucose tolerancy test is applied in order to determine the level of the impaired glucose tolerance. In the group of the patients treated with olanzapine glucose tolerance was impaired in 33% of the patients, while in the group of the patients treated with risperidone in 20%. Impaired glucose tolerance mostly manifested as hyperinsulinemia. Authors discussed about possible mechanisms responsible for the impaired glucose tolerance in the patients treated with new antipsychotics. Authors conclude that insulin resistance is the main mechanism for development of the diabetes type II in the schizophrenic patients treated with antipsychotics. Insulin resistance is the result of the multiple effects of the antipsychotics, among which most common are: increased body mass and direct involvement of the antipsychotics in the glucose metabolism.  相似文献   

18.
We performed second harmonic generation (SHG) imaging of collagen in rat-tendon cryosections, using femtosecond laser scanning confocal microscopy, both in backscattering and transmission geometries. SHG transmission images of collagen fibers were spatially resolved due to a coherent, directional SHG component. This effect was enhanced with the use of an index-matching fluid (n(i) = 1.52). The average SHG intensity oscillated with wavelength in the backscattered geometry (isotropic SHG component), whereas the spectral profile was consistent with quasi-phase-matching conditions in transmission geometry (forward propagating, coherent SHG component) around 440 nm (lambda(p) = 880 nm). Collagen type I from bovine Achilles tendon was imaged for SHG in the backscattered geometry and its first-order effective nonlinear coefficient was determined (|d(eff)| approximately 0.085(+/-0.025)x10(-12)mV(-1)) by comparison to samples of inorganic materials with known effective nonlinear coefficients (LiNbO3 and LiIO3). The SHG spectral response of collagen type I from bovine Achilles tendon matched that of the rat-tendon cryosections in backscattered geometry. Collagen types I, II, and VI powders (nonfibrous) did not show any detectable SHG, indicating a lack of noncentrosymmetric crystalline structure at the molecular level. The various stages of collagen thermal denaturation were investigated in rat-tendon cryosections using SHG and bright-field imaging. Thermal denaturation resulted in the gradual destruction of the SHG signal.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号