共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations of FOXP2 are associated with altered brain structure, including the striatal part of the basal ganglia, and cause a severe speech and language disorder. Songbirds serve as a tractable neurobiological model for speech and language research. Experimental downregulation of FoxP2 in zebra finch Area X, a nucleus of the striatal song control circuitry, affects synaptic transmission and spine densities. It also renders song learning and production inaccurate and imprecise, similar to the speech impairment of patients carrying FOXP2 mutations. Here we show that experimental downregulation of FoxP2 in Area X using lentiviral vectors leads to reduced expression of CNTNAP2, a FOXP2 target gene in humans. In addition, natural downregulation of FoxP2 by age or by singing also downregulated CNTNAP2 expression. Furthermore, we report that FoxP2 binds to and activates the avian CNTNAP2 promoter in vitro. Taken together these data establish CNTNAP2 as a direct FoxP2 target gene in songbirds, likely affecting synaptic function relevant for song learning and song maintenance. 相似文献
2.
Mugdha Deshpande Fakhriddin Pirlepesov Thierry Lints 《Proceedings. Biological sciences / The Royal Society》2014,281(1781)
As in human infant speech development, vocal imitation in songbirds involves sensory acquisition and memorization of adult-produced vocal signals, followed by a protracted phase of vocal motor practice. The internal model of adult tutor song in the juvenile male brain, termed ‘the template’, is central to the vocal imitation process. However, even the most fundamental aspects of the template, such as when, where and how it is encoded in the brain, remain poorly understood. A major impediment to progress is that current studies of songbird vocal learning use protracted tutoring over days, weeks or months, complicating dissection of the template encoding process. Here, we take the key step of tightly constraining the timing of template acquisition. We show that, in the zebra finch, template encoding can be time locked to, on average, a 2 h period of juvenile life and based on just 75 s of cumulative tutor song exposure. Crucially, we find that vocal changes occurring on the day of training correlate with eventual imitative success. This paradigm will lead to insights on how the template is instantiated in the songbird brain, with general implications for deciphering how internal models are formed to guide learning of complex social behaviours. 相似文献
3.
Christopher R. Olson Lisa K. Hodges Claudio V. Mello 《Developmental neurobiology》2015,75(12):1315-1338
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post‐hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1315–1338, 2015 相似文献
4.
5.
Birdsong is a learned vocal behavior used in intraspecific communication. The motor pathway serving learned vocalizations includes the forebrain nuclei NIf, HVC, and RA; RA projects to midbrain and brain stem areas that control the temporal and acoustic features of song. Nucleus Uvaeformis of the thalamus (Uva) sends input to two of these forebrain nuclei (NIf and HVC) but has not been thought to be important for song production. We used three experimental approaches to reexamine Uva's function in adult male zebra finches. (1) Electrical stimulation applied to Uva activated HVC and the vocal motor pathway, including tracheosyringeal motor neurons that innervate the bird's vocal organ. (2) Bilateral lesions of Uva including the dorso-medial portion of the nucleus affected the normal temporal organization of song. (3) Chronic multiunit recordings from Uva during normal song and calls show bursts of premotor activity that lead the onset of some song components, and also larger bursts that mark the end of complete song motifs. These results implicate Uva in the production of learned vocalizations, and further suggest that Uva contributes more to the temporal structure than to the acoustic characteristics of song. © 1993 John Wiley & Sons, Inc. 相似文献
6.
7.
8.
Male zebra finches normally learn their song from adult models during a restricted period of juvenile development. If song models are not available then, juveniles develop an isolate song which can be modified in adulthood. In this report we investigate the features of juvenile experience that underly the timing of song learning. Juvenile males raised in soundproof chambers or in visual isolation from conspecifics developed stable isolate song. However, whereas visual isolate song notes were similar to those of colony-reared males, soundproof chamber isolates included many phonologically abnormal notes in their songs. Despite having stable isolate songs, both groups copied new notes from tutors presented to them in adulthood (2.7 notes per bird for soundproof chamber isolates, 4.4 notes per bird for visual isolates). Old notes were often modified or eliminated. We infer that social interactions with live tutors are normally important for closing the sensitive period for song learning. Lesions of a forebrain nucleus (IMAN) had previously been shown to disrupt juvenile song learning, but not maintenance of adult song for up to 5 weeks after surgery. In this study, colony-reared adult males given bilateral lesions of IMAN retained all their song notes for up to 4–7.5 months after lesioning. However, similar lesions blocked all song note acquisition in adulthood by both visual and soundproof chamber isolates. Other work has shown that intact hearing is necessary for the maintenance of adult zebra finch song. We infer that auditory pathways used for song maintenance and acquisition differ: IMAN is necessary for auditorily guided song acquisition—whether by juveniles or adults—but not for adult auditorily guided song maintenance. © 1993 John Wiley & Sons, Inc. 相似文献
9.
Widespread telencephalic neuronal replacement occurs throughout life in birds. We explored the potential relationship between thyroxine (T4) and cell turnover in the adult male zebra finch. We found that many cells in the zebra finch brain, including long‐projection neurons in the high vocal center (HVC), stained positively with an antibody to thyroid hormone receptors (TR). Labeling was generally weak in the ventricular zone (VZ) that gives rise to new neurons but some proliferative VZ cells and/or their progeny, identified by [3H]‐thymidine labeling, co‐labeled with anti‐TR antibody. Acute T4 treatment dramatically increased the number of pyknotic and TUNEL‐positive cells in HVC and other telencephalic regions. In contrast, degenerating cells were never observed in the archistriatum or sub‐telencephalic regions, suggesting that excess T4 augments cell death selectively in regions that show naturally occurring neuronal turnover. VZ mitotic activity was not altered shortly after acute T4 treatment at a dosage that stimulated cell death, although [3H]‐labeling intensity per cell was slightly reduced. Moreover, the incorporation rates for neurons formed shortly before or after acute hormone treatment were no different from control values. Chronic T4 treatment resulted in a reduction in the total number of HVC neurons. Thus, hyperthyroidism augmented neuronal death, which was not compensated for by neuronal replacement. Collectively, these results indicate that excess T4 affects adult neuronal turnover in birds, and raises the possibility that thyroxine plays an important role in the postnatal development of the avian brain and vocal behavior. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 323–341, 2002 相似文献
10.
Sadananda M 《Journal of biosciences》2004,29(2):189-200
The distribution of acetylcholinesterase (AChE) in the central vocal control nuclei of the zebra finch was studied using enzyme histochemistry. AChE fibres and cells are intensely labelled in the forebrain nucleus area X, strongly labelled in high vocal centre (HVC) perikarya, and moderately to lightly labelled in the somata and neuropil of vocal control nuclei robust nucleus of arcopallium (RA), medial magnocellular nucleus of the anterior nidopallium (MMAN) and lateral magnocellular nucleus of the anterior nidopallium (LMAN). The identified sites of cholinergic and/or cholinoceptive neurons are similar to the cholinergic presence in vocal control regions of other songbirds such as the song sparrow, starling and another genus of the zebra finch (Poephila guttata), and to a certain extent in parallel vocal control regions in vocalizing birds such as the budgerigar. AChE presence in the vocal control system suggests innervation by either afferent projecting cholinergic systems and/or local circuit cholinergic neurons. Co-occurrence with choline acetyltransferase (ChAT) indicates efferent cholinergic projections. The cholinergic presence in parts of the zebra finch vocal control system, such as the area X, that is also intricately wired with parts of the basal ganglia, the descending fibre tracts and brain stem nuclei could underlie this circuitry’s involvement in sensory processing and motor control of song. 相似文献
11.
12.
13.
14.
As is the case for human speech, birdsong is transmitted across generations by imitative learning. Although transfer of song patterns from adults to juveniles typically occurs via vertical or oblique transmission, there is also evidence of horizontal transmission between juveniles of the same generation. Here, we show that a young male zebra finch (Taeniopygia guttata) that has been exposed to its father during the sensitive period for song learning can lead a brother, that has never heard the paternal song, to imitate some sounds of the father. Moreover, song similarity between the two brothers was higher than the similarity measured between the paternal song and the song of the brother that had a week-long exposure to the father. We speculate that the phenomenon of within-generation song learning among juveniles may be more widespread than previously thought and that when a juvenile evaluates potential models for imitative learning, a sibling may be as salient as an adult. 相似文献
15.
16.
The quantity and quality of social relationships, as captured by social network analysis, can have major fitness consequences. Various studies have shown that individual differences in social behaviour can be due to variation in exposure to developmental stress. However, whether these developmental differences translate to consistent differences in social network position is not known. We experimentally increased levels of the avian stress hormone corticosterone (CORT) in nestling zebra finches in a fully balanced design. Upon reaching nutritional independence, we released chicks and their families into two free-flying rooms, where we measured daily social networks over five weeks using passive integrated transponder tags. Developmental stress had a significant effect on social behaviour: despite having similar foraging patterns, CORT chicks had weaker associations to their parents than control chicks. Instead, CORT chicks foraged with a greater number of flock mates and were less choosy with whom they foraged, resulting in more central network positions. These findings highlight the importance of taking developmental history into account to understand the drivers of social organization in gregarious species. 相似文献
17.
Devin P. Merullo Chinweike N. Asogwa Miguel Sanchez‐Valpuesta Shin Hayase Bikash R. Pattnaik Kazuhiro Wada Lauren V. Riters 《Developmental neurobiology》2018,78(7):671-686
Learned vocalizations are important for communication in some vertebrate taxa. The neural circuitry for the learning and production of vocalizations is well known in songbirds, many of which learn songs initially during a critical period early in life. Dopamine is essential for motor learning, including song learning, and dopamine‐related measures change throughout development in song‐control regions such as HVC, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and the robust nucleus of the arcopallium (RA). In mammals, the neuropeptide neurotensin strongly interacts with dopamine signaling. This study investigated a potential role for the neurotensin system in song learning by examining how neurotensin (Nts) and neurotensin receptor 1 (Ntsr1) expression change throughout development. Nts and Ntsr1 mRNA expression was analyzed in song‐control regions of male zebra finches in four stages of the song learning process: pre‐subsong (25 days posthatch; dph), subsong (45 dph), plastic song (60 dph), and crystallized song (130 dph). Nts expression in LMAN during the subsong stage was lower compared to other time points. Ntsr1 expression was highest in HVC, Area X, and RA during the pre‐subsong stage. Opposite and complementary expression patterns for the two genes in song nuclei and across the whole brain suggest distinct roles for regions that produce and receive Nts. The expression changes at crucial time points for song development are similar to changes observed in dopamine studies and suggest Nts may be involved in the process of vocal learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 671–686, 2018 相似文献
18.
Species-typical vocal patterns subserve species identification and communication for individual organisms. Only a few groups of organisms learn the sounds used for vocal communication, including songbirds, humans, and cetaceans. Vocal learning in songbirds has come to serve as a model system for the study of brain-behavior relationships and neural mechanisms of learning and memory. Songbirds learn specific vocal patterns during a sensitive period of development via a complex assortment of neurobehavioral mechanisms. In many species of songbirds, the production of vocal behavior by adult males is used to defend territories and attract females, and both males and females must perceive vocal patterns and respond to them. In both juveniles and adults, specific types of auditory experience are necessary for initial song learning as well as the maintenance of stable song patterns. External sources of experience such as acoustic cues must be integrated with internal regulatory factors such as hormones, neurotransmitters, and cytokines for vocal patterns to be learned and produced. Thus, vocal behavior in songbirds is a culturally acquired trait that is regulated by multiple intrinsic as well as extrinsic factors. Here, we focus on functional relationships between circuitry and behavior in male songbirds. In that context, we consider in particular the influence of sex hormones on vocal behavior and its underlying circuitry, as well as the regulatory and functional mechanisms suggested by morphologic changes in the neural substrate for song control. We describe new data on the architecture of the song system that suggests strong similarities between the songbird vocal control system and neural circuits for memory, cognition, and use-dependent plasticity in the mammalian brain. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 602–618, 1997 相似文献
19.
In some songbirds perturbing auditory feedback can promote changes in song structure well beyond the end of song learning. One factor that may drive vocal change in such deafened birds is the ongoing addition of new vocal-motor neurons into the song system. Without auditory feedback to guide their incorporation, the addition of these new neurons could disrupt the established song pattern. To assess this hypothesis, the authors determined if neuronal recruitment into the vocal motor nucleus HVC is affected by neural signals that influence vocal change in adult deafened birds. Such signals appear to be conveyed via LMAN, a nucleus in the anterior forebrain that is necessary for vocal change after deafening. Here the authors tested whether LMAN lesions might restrict song degradation after deafening by reducing the addition or survival of new HVC neurons that would otherwise corrupt the ongoing song pattern. Using [3H]thymidine autoradiography to identify neurons generated in adult zebra finches, it was shown here that LMAN lesions do not reduce the number or percent of new HVC neurons surviving for either several weeks or months after [3H]thymidine labeling. However, the authors confirmed previous reports that LMAN lesions restrict vocal change after deafening. These data suggest that neurons incorporated into the adult HVC may form behaviorally adaptive connections without requiring auditory feedback, and that any role such neurons may play in promoting vocal change after adult deafening requires anterior forebrain pathway output. 相似文献
20.
Plasticity of stereotyped birdsong driven by chronic manipulation of cortical-basal ganglia activity
- Download : Download high-res image (139KB)
- Download : Download full-size image