首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In seasonally breeding male oscines, song learning and expression are controlled by brain regions (vocal control regions, VCRs) that exhibit seasonal neural plasticity in adulthood. Several VCRs contain androgen receptors, and gonadal androgens play important roles in the control of seasonal structural and functional changes of VCRs. Recent studies also found that adult VCRs are influenced by factors other than gonadal hormones, including photoperiod, but the relative importance of these factors and their mechanisms of action are poorly understood. To address this issue, we investigated the contributions of photoperiod and testicular androgens to the regulation of VCR volumes and to the control of song expression in adult dark-eyed juncos, Junco hyemalis. Exposing castrated (CX) photosensitive males to long days (LD) enhanced their high vocal center (HVc) volumes compared to those of males held on short days (SD). These volumes were not further increased by concurrent testosterone (T) treatment, revealing a marked and gonadal androgen-independent stimulatory influence of photoperiod on the size of this brain region. HVc sizes were smaller in LD-exposed photorefractory than photosensitive males irrespective of whether birds were intact or had been castrated before photoperiodic manipulations, but HVc sizes increased in response to T treatment in intact photorefractory males. Thus, LD exposure can increase HVc volumes in the absence of gonadal T, but large volume induction in photorefractory males requires elevated plasma T levels. Testosterone treatment of SD-exposed photosensitive males increased HVc, but not Area X, MAN, or RA volumes. Only T-treated males sang and this treatment given to castrates was equally effective behaviorally when administered to photosensitive, photostimulated, or photorefractory juncos. This result indicates that the stimulating influence of LD exposure on HVc volumes is insufficient to induce song in the absence of elevated plasma T levels.  相似文献   

2.
Lateral MAN (magnocellular nucleus of the anterior neostriatum) is a forebrain nucleus that is known to be importantly involved with vocal learning in juvenile male zebra finches only during a restricted period of the learning process: lesions of lMAN completely disrupt song behavior in zebra finches prior to 50 days of age but have little or no effect in older juvenile or adult birds. The development of lMAN, as of other song-control regions, is delayed until the time that song behavior is being learned. Lateral MAN undergoes a substantial loss of neurons between 25 and 55 days of age, a time that encompasses initial stages of vocal production as well as the interval during which lMAN lesions become ineffective. In this study, we measured both the time course of neuronal loss and the incidence of pyknotic cells within lMAN during the period of cell loss. There is a pronounced loss of neurons from lMAN between 20 and 35 days, after which the adult number of neurons is established. The incidence of pyknosis is greatest at 20 days, around the time when the loss of live cells is also most pronounced, suggesting that the loss of neurons from lMAN is attributable to cell death. The loss of neurons occurs well before lesions of lMAN become ineffective in disrupting vocal behavior. Thus the neurons remaining in lMAN after the period of cell loss apparently undergo a substantial change in function at the time lesions lose effectiveness (about 55-60 days).  相似文献   

3.
There is considerable interindividual variation in the volumes of song control nuclei. Sex and physiological condition appear to contribute to these differences; however, these factors alone do not account for all of the variation. Studies have attempted to relate differences in song behavior (i.e., song repertoire size) to variation in song nucleus volume, but have met with mixed success. In this article, two studies are presented that used male European starlings (Sturnus vulgaris) to explore the relationship between song nuclei volumes and age-related differences in song behavior and interindividual variation in song behavior in adults. The results of the first study showed that song repertoire size and song bout length were significantly greater in older adult than in yearling males. In addition, the volumes of the high vocal center (HVC) and nucleus robustus archistriatalis (RA) were significantly larger in older adults than yearlings. Area X of the parolfactory lobe did not differ significantly in volume between the two age classes. In the second study, both HVC and RA volume correlated positively with song bout length but not repertoire size among adult birds. Based on these results a new hypothesis is presented that states that variation in song nuclei volumes in starlings relates more to the amount of song produced than to the number of song types stored in memory. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The effects of reproductive condition and exogenous melatonin on immune function were investigated in castrated European starlings, Sturnus vulgaris. Photorefractory and photostimulated starlings exposed to long days were implanted with melatonin or with blank capsules. Photostimulated starlings with blank capsules exhibited reduced splenocyte proliferation in response to the T-cell mitogen, concanavalin A, compared with the other long-day birds. Exogenous melatonin prevented the suppression of immune function by photostimulation. Photorefractory starlings, with or without melatonin implants, exhibited enhanced immune function compared with photostimulated starlings implanted with blanks. This enhancement was not mediated by endogenous melatonin, but appeared to be related to changes in reproductive state. In addition to the traditional costs of reproduction in birds (e.g. raising of young), there may be a cost of the reproductive state of starlings (i.e. whether they are photorefractory or photostimulated). These data are, we believe, the first to indicate a direct effect of reproductive state on immune function that is independent of both photoperiod (i.e., changes in the duration of melatonin secretion) and gonadal steroids.  相似文献   

5.
Early effects of experience on synaptic reorganization and behavior often involve activation of N-methyl-D -aspartate (NMDA) receptors. We have begun to explore the role of this glutamate-receptor subtype in the development of learned birdsong. Song learning in zebra finches occurs during a restricted period that coincides with extensive synaptic reorganization within neural regions controlling song behavior. In one brain region necessary for song learning, the lateral magnocellular nucleus of the anterior neostriatum (lMAN), NMDA receptor binding is twice as high at the onset of song learning as in adulthood. In the present study, we used quantitative autoradiography with the noncompetitive NMDA antagonist [3H]MK-801 to examine more closely the developmental decline in NMDA receptor binding within lMAN and found that it occurred gradually over the period of song learning and was not associated with a particular stage of the learning process. In addition, early isolation from conspecific song did not affect [3H]MK-801 binding in lMAN at 30, 60, or 80 days. Since behavioral studies confirmed that our isolate rearing conditions extended the sensitive period for song learning, we conclude that the normal developmental decline in overall NMDA receptor binding within lMAN does not terminate the capacity for song learning. Finally, early deafening, which prevents both stages of song learning, also did not affect [3H]MK-801 binding in lMAN at 80 days, indicating that the decline in NMDA receptor binding occurs in the absence of auditory experiences associated with song development. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
In male starlings (Sturnus vulgaris) courtship song plays a critical role in mate attraction. During the breeding season courtship song occurs prior to copulation and appears to reflect male sexual arousal. Outside the breeding season starlings sing, but song appears unrelated to reproduction. The aromatization of testosterone (T), likely within the medial preoptic nucleus (POM), is critical for the expression of male sexual arousal. The present study was performed to determine whether seasonal changes in the POM might relate to seasonal changes in courtship singing behavior in male starlings. T concentrations, the volume of the POM, and aromatase within the POM were examined both during and outside of the breeding season in male starlings. Song was also recorded at these times both with and without a female present. The POM was largest and contained dense aromatase immunostaining only during the spring breeding season, when T concentrations were highest and males responded to a female with an increase in courtship song. Outside the breeding season the volume of the POM was small, T concentrations were low, and males displayed no changes in song expression in response to female conspecifics. Song bout length was positively related to POM volume, and males sang longer songs in spring. Only males with nestboxes in spring responded to a female, and the POM tended to be larger in these males, suggesting that nestbox possession might influence neuroplasticity within the POM. Overall, the findings suggest that T-dependent plasticity and aromatase activity within the POM might regulate courtship singing in a wild songbird.  相似文献   

7.
8.
9.
A common theme of diverse neural systems is that circuits that are important for initial acquisition of learning do not necessarily serve as a substrate for the long-term storage of that memory. The neural basis of vocal learning in songbirds provides an example of this phenomenon, since a circuit that is necessary for vocal production during initial stages of vocal development apparently plays no subsequent role in controlling learned vocalizations. This striking functional change suggests the possibility of marked physiological changes in synaptic transmission within this circuit. We therefore examined intrinsic and synaptic properties of neurons in the cortical nucleus lMAN (lateral magnocellular nucleus of the anterior neostriatum), which forms part of this developmentally regulated circuit, in an in vitro preparation of the zebra finch forebrain. Although both functional and morphological characteristics of these neurons change substantially during vocal development, we did not observe widespread, substantive changes in the electrophysiological characteristics of juvenile versus adult lMAN neurons examined in vitro. Overall, both the intrinsic properties and synaptic responses of lMAN neurons were similar in slices from juvenile birds (at ages when lesions of lMAN disrupt vocal production) and in slices from adult birds (when lMAN lesions have no effect on song production). However, one intrinsic property that did vary between juvenile and adult cells was spike duration, which was longer in juvenile cells, suggesting the potential for activation of second-messenger cascades and/or enhanced synaptic transmission onto target cells of lMAN neurons. The pattern of synaptic response observed in both juvenile and adult cells suggests that lMAN projection neurons receive direct excitatory afferent inputs, as well as disynaptic inhibitory inputs from interneurons within lMAN. Activation of inhibitory interneurons rapidly curtails the excitatory response seen in projection neurons. This inhibition was abolished by bicuculline, indicating that the inhibitory interneurons normally exert their postsynaptic response via GABAA receptors on projection neurons. The inhibitory response could also be blocked by CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), suggesting that the activation of inhibitory interneurons within lMAN may be governed primarily by AMPA receptors. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 642–658, 1998  相似文献   

10.
11.
In male starlings (Sturnus vulgaris) courtship song plays a critical role in mate attraction. During the breeding season courtship song occurs prior to copulation and appears to reflect male sexual arousal. Outside the breeding season starlings sing, but song appears unrelated to reproduction. The aromatization of testosterone (T), likely within the medial preoptic nucleus (POM), is critical for the expression of male sexual arousal. The present study was performed to determine whether seasonal changes in the POM might relate to seasonal changes in courtship singing behavior in male starlings. T concentrations, the volume of the POM, and aromatase within the POM were examined both during and outside of the breeding season in male starlings. Song was also recorded at these times both with and without a female present. The POM was largest and contained dense aromatase immunostaining only during the spring breeding season, when T concentrations were highest and males responded to a female with an increase in courtship song. Outside the breeding season the volume of the POM was small, T concentrations were low, and males displayed no changes in song expression in response to female conspecifics. Song bout length was positively related to POM volume, and males sang longer songs in spring. Only males with nestboxes in spring responded to a female, and the POM tended to be larger in these males, suggesting that nestbox possession might influence neuroplasticity within the POM. Overall, the findings suggest that T-dependent plasticity and aromatase activity within the POM might regulate courtship singing in a wild songbird.  相似文献   

12.
This study examined the relationship between the volumes of four song control nuclei: the high vocal center (HVC), the lateral part of the magnocellular nucleus of the anterior neostriatum (lMAN), Area X, and the robust nucleus of the archistriatum (RA), as well as syrinx mass, with several measures of song output and song complexity in male zebra finches (Taeniopygia guttata). Male zebra finches' songs were recorded in standardized recording sessions. The syrinx and brain were subsequently collected from each bird. Volumes of the song control nuclei were reconstructed by measuring the cross-sectional area of serial sections. Syrinx mass was positively correlated with RA volume. The volume of lMAN was negatively related to element repertoire size and the number of elements per phrase. We found no other correlations between brain and behavioral measures. This study, combined with others, indicates that the evidence for a general relationship among songbirds between HVC volume and song complexity is equivocal. There are clear species differences in this brain-behavior correlation. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 421–430, 1998  相似文献   

13.
In seasonally breeding songbirds, the brain regions that control song behavior undergo dramatic structural changes at the onset of each annual breeding season. As spring approaches and days get longer, gonadal testosterone (T) secretion increases and triggers the growth of several song control nuclei. T can be converted to androgenic and estrogenic metabolites by enzymes expressed in the brain. This opens the possibility that the effects of T may be mediated via the androgen receptor, the estrogen receptor, or both. To test this hypothesis, we examined the effects of two bioactive T metabolites on song nucleus growth and song behavior in adult male white‐crowned sparrows. Castrated sparrows with regressed song control nuclei were implanted with silastic capsules containing either crystalline T, 5α‐dihydrotestosterone (DHT), estradiol (E2), or a combination of DHT+E2. Control animals received empty implants. Song production was highly variable within treatment groups. Only one of seven birds treated with E2 alone was observed singing, whereas a majority of birds with T or DHT sang. After 37 days of exposure to sex steroids, we measured the volumes of the forebrain song nucleus HVc, the robust nucleus of the archistriatum (RA), and a basal ganglia homolog (area X). All three steroid treatments increased the volumes of these three song nuclei when compared to blank‐implanted controls. These data demonstrate that androgen and estrogen receptor binding are sufficient to trigger seasonal song nucleus growth. These data also suggest that T's effects on seasonal song nucleus growth may depend, in part, upon enzymatic conversion of T to bioactive metabolites. © 2003 Wiley Periodicals, Inc. J Neurobiol 57:130–140, 2003  相似文献   

14.
Perineuronal nets (PNN) are aggregations of chondroitin sulfate proteoglycans surrounding the soma and proximal processes of neurons, mostly GABAergic interneurons expressing parvalbumin. They limit the plasticity of their afferent synaptic connections. In zebra finches PNN develop in an experience‐dependent manner in the song control nuclei HVC and RA (nucleus robustus arcopallialis) when young birds crystallize their song. Because songbird species that are open‐ended learners tend to recapitulate each year the different phases of song learning until their song crystallizes at the beginning of the breeding season, we tested whether seasonal changes in PNN expression would be found in the song control nuclei of a seasonally breeding species such as the European starling. Only minimal changes in PNN densities and total number of cells surrounded by PNN were detected. However, comparison of the density of PNN and of PNN surrounding parvalbumin‐positive cells revealed that these structures are far less numerous in starlings that show extensive adult vocal plasticity, including learning of new songs throughout the year, than in the closed‐ended learner zebra finches. Canaries that also display some vocal plasticity across season but were never formally shown to learn new songs in adulthood were intermediate in this respect. Together these data suggest that establishment of PNN around parvalbumin‐positive neurons in song control nuclei has diverged during evolution to control the different learning capacities observed in songbird species. This differential expression of PNN in different songbird species could represent a key cellular mechanism mediating species variation between closed‐ended and open‐ended learning strategies. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 975–994, 2017  相似文献   

15.
16.
Previous studies have suggested that both major active metabolites of testosterone, estradiol (E2) and dihydrotestosterone (DHT), are needed for complete masculinization of the brain regions that control song in passerine birds. However, DHT treatment of hatchling female zebra finches has only small masculinizing effects on the song system. To assess whether E2 and DHT have a synergistic effect on the masculinization of the zebra finch song system, female zebra finches were given Silastic implants of E2 on the day of hatching (day 1) either without any additional hormone treatment or in combination with DHT on days 1, 14, or 70. At 105 to 110 days of age, we measured the volumes of Area X, higher vocal center (HVC), robust nucleus of the archistriatum (RA), soma sizes in HVC, RA, and the lateral magnocellular nucleus of the neostriatum (lMAN), and neuron density and number in RA. E2 masculinized all of the measures in the song system with the exception of the number of neurons in RA. DHT did not synergize with E2 to produce any additional masculinization of the attributes measured. These data demonstrate that the combination of E2 and DHT did not result in the complete masculinization of the song control nuclei and argue against the importance of androgen in sexual differentiation of the song system. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Only male zebra finches (Poephila guttata) sing, and nuclei implicated in song behavior exhibit marked sex differences in neuron number. In the robust nucleus of the anterior neostriatum (RA), these sex differences develop because more neurons die in young females than in males. However, it is not known whether the sexually dimorphic survival of RA neurons is a primary event in sexual differentiation or a secondary response to sex differences in the number of cells interacting trophically with RA neurons. In particular, since sexual differentiation of the RA parallels the development of dimorphisms in the numbers of neurons providing afferent input from the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and the high vocal center (HVC), it has been hypothesized that sex differences in the size of these afferent populations trigger differential RA neuron survival and growth. To test this hypothesis, we lesioned either the lMAN or both the lMAN and HVC unilaterally in 12-day-old male and female zebra finches. Subsequently, RA cell death and RA neuron number and size were measured. Unilateral lMAN lesions increased cell death and decreased neuron number and size within the ipsilateral RA of both sexes. However, even in the lMAN-lesioned hemisphere, these effects were less pronounced in males than in females, so that by day 25 the volume, number, and size of neurons were sexually dimorphic in both the contralateral and ipsilateral RA. Similarly, the absence of both lMAN and HVC afferents did not prevent the emergence of sex differences in the number and size of RA neurons by 25 day posthatching. We conclude that these sex differences within the RA are not a secondary response to dimorphisms in the numbers of lMAN or HVC neurons providing afferent input. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Many animals exhibit seasonal changes in behavior and its underlying neural substrates. In seasonally breeding songbirds, the brain nuclei that control song learning and production undergo substantial structural changes at the onset of each breeding season, in association with changes in song behavior. These changes are largely mediated by photoperiod-dependent changes in circulating concentrations of gonadal steroid hormones. Little is known, however, about whether changes in the electrophysiological activity of neurons accompany the dramatic morphological changes in the song nuclei. Here we induced seasonal-like changes in the song systems of adult white-crowned sparrows and used extracellular recording in acute brain slices from those individuals to study physiological properties of neurons in the robust nucleus of the arcopallium (RA), a pre-motor nucleus necessary for song production. We report that: RA neurons from birds in breeding condition show a more than twofold increase in spontaneous firing rate compared to those from nonbreeding condition; this change appears to require both androgenic and estrogenic actions; and this change is intrinsic to the RA neurons. Thus, neurons in the song circuit exhibit both morphological and physiological adult seasonal plasticity.  相似文献   

19.
We tested the ability of 1-year-old European starlings (Sturnus vulgaris) to acquire songs while in different physiological states. Photorefractory males, with low testosterone levels, learned songs as completely and as accurately as photosensitive males in full reproductive condition. This indicates that song acquisition in 1-year-old males does not depend on high levels of androgens. The ability to learn songs during the nonbreeding season may reflect the high song output of potential tutors through most of the year, including the photorefractory period, and may facilitate increases in song repertoire size in adulthood.  相似文献   

20.
The song system of zebra finches is sexually dimorphic: the volumes of the song control nuclei and the neurons within these nuclei are larger in males. The song system of hatching female zebra finches is masculinized by systemic treatment with estrogen. We investigated the locus of this estrogen action by using microimplants of estradiol benzoate (EB). We implanted female zebra finch nestlings 10–13 days old with Silastic pellets containing approximately 2 μg EB at one of several sites: near the higher vocal center (HVC), in the brain distant from HVC, or in the periphery either under the skin of the breast or in the peritoneal cavity. Controls were either unimplanted or implanted near HVC with Silastic pellets without hormone. The brains were fixed by perfusion at 60 days, and the volumes of the song control regions as well as the sizes of individual neurons were measured. Neurons in HVC were lerger (more masculine) in the HVC-implanted group than in other groups, which did not differ among themselves. The size of neurons in the robust nucleus of the archistriatum (RA) and the lateral magnocellular nucleus ofthe neostriatum (lMAN) were inversely correlated with the distance of the EB pellet to HVC; neurons in RA and lMAN were larger when the EB pellets were closer to HVC. This result suggests that implants near HVC were at or near a site of estrogen action. To our knowledge, this is the first demonstration that localized brain implants of estrogen cause morphological masculinization in any species. 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号