首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A recent article of Zavrel et al. in this journal (Eng. Life Sci. 2010, 10, 191–200) described a comparison of several computer programs for progress‐curve analysis with respect to different computational approaches for parameter estimation. The authors applied both algebraic and dynamic parameter estimations, although they omitted time‐course analysis through the integrated rate equation. Recently, it was demonstrated that progress‐curve analysis through the integrated rate equation can be considered a simple and useful alternative for enzymes that obey the generalized Michaelis–Menten reaction mechanism. To complete this gap, the time‐dependent solution of the generalized Michaelis–Menten equation is here fitted to the progress curves from the Zavrel et al. reference article. This alternative rate‐integration approach for determining the kinetics parameters of Michaelis–Menten‐type enzymes yields the values with the greatest accuracy, as compared with the results obtained by other (algebraic or dynamic) parameter estimations.  相似文献   

2.
MOTIVATION: Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. RESULTS: We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.  相似文献   

3.

Background

Determining the parameters of a mathematical model from quantitative measurements is the main bottleneck of modelling biological systems. Parameter values can be estimated from steady-state data or from dynamic data. The nature of suitable data for these two types of estimation is rather different. For instance, estimations of parameter values in pathway models, such as kinetic orders, rate constants, flux control coefficients or elasticities, from steady-state data are generally based on experiments that measure how a biochemical system responds to small perturbations around the steady state. In contrast, parameter estimation from dynamic data requires time series measurements for all dependent variables. Almost no literature has so far discussed the combined use of both steady-state and transient data for estimating parameter values of biochemical systems.

Results

In this study we introduce a constrained optimization method for estimating parameter values of biochemical pathway models using steady-state information and transient measurements. The constraints are derived from the flux connectivity relationships of the system at the steady state. Two case studies demonstrate the estimation results with and without flux connectivity constraints. The unconstrained optimal estimates from dynamic data may fit the experiments well, but they do not necessarily maintain the connectivity relationships. As a consequence, individual fluxes may be misrepresented, which may cause problems in later extrapolations. By contrast, the constrained estimation accounting for flux connectivity information reduces this misrepresentation and thereby yields improved model parameters.

Conclusion

The method combines transient metabolic profiles and steady-state information and leads to the formulation of an inverse parameter estimation task as a constrained optimization problem. Parameter estimation and model selection are simultaneously carried out on the constrained optimization problem and yield realistic model parameters that are more likely to hold up in extrapolations with the model.  相似文献   

4.
We present a simple method for estimating kinetic parameters from progress curve analysis of biologically catalyzed reactions that reduce to forms analogous to the Michaelis-Menten equation. Specifically, the Lambert W function is used to obtain explicit, closed-form solutions to differential rate expressions that describe the dynamics of substrate depletion. The explicit nature of the new solutions greatly simplifies nonlinear estimation of the kinetic parameters since numerical techniques such as the Runge-Kutta and Newton-Raphson methods used to solve the differential and integral forms of the kinetic equations, respectively, are replaced with a simple algebraic expression. The applicability of this approach for estimating Vmax and Km in the Michaelis-Menten equation was verified using a combination of simulated and experimental progress curve data. For simulated data, final estimates of Vmax and Km were close to the actual values of 1 microM/h and 1 microM, respectively, while the standard errors for these parameter estimates were proportional to the error level in the simulated data sets. The method was also applied to hydrogen depletion experiments by mixed cultures of bacteria in activated sludge resulting in Vmax and Km estimates of 6.531 microM/h and 2.136 microM, respectively. The algebraic nature of this solution, coupled with its relatively high accuracy, makes it an attractive candidate for kinetic parameter estimation from progress curve data.  相似文献   

5.
The use of computer-based isotach plots, relating reaction velocity to simultaneous variation of two substrates or effectors of an enzyme, in producing estimates of the parameters of enzyme rate equations was investigated. The computer program (;SYMAP') incorporates an interpolation algorithm, and the superiority of this over visual estimation in producing interpolated velocity values for the estimation of parameter values by conventional double-reciprocal plots is described. The usefulness of the SYMAP program in monitoring the process of fitting data obtained by simultaneous changes in two experimental variables is also described. It is shown that if the residual errors are weighted by a procedure described elsewhere (Ottaway, 1971b, 1973), the percentage error of the computed velocity is distributed evenly over a plot which contains a 100-fold variation in the concentration of one substrate and a 500-fold variation in the concentration of Mg(2+), and in which the velocity of the reaction (that catalysed by NAD kinase) varies over a 60-fold range. The two-dimensional percentage error plot was used to assess the limits within which an incomplete inhibition equation is valid, and to detect a discrepancy in an expected good fit, caused by an impurity in one of the substrates.  相似文献   

6.
This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers’ route choice behavior.  相似文献   

7.
Parameter estimation studies have been conducted employing mathematical models developed previously by the investigators and experimental data collected by the last author. A batch fermentation process in which Candida lipolytica were cultured on n-hexadecane dissolved in dewaxed gas oil was employed to obtain the experimental data. The kinetic data from a number of batch experiments conducted at different initial substrate concentrations and different dispersed phase volume fractions were analyzed assuming that, the basic model parameters (maximum specific growth rate, saturation constant, substrate phase equilibrium constant, adsorption constant, desorption constant, etc.) did not change from experiment to experiment. The Gauss-Newton method with modification by Greenstadt, Eisenpress, Bard, and Carroll was used to minimize the conventional sum of squares criterion on the IBM 300/50 computer. The individual confidence intervals were obtained for each individual parameter. Tin- models were compared employing the F-test for equality of variances and an analysis of residuals. For the two best models, the estimated parameter values were compared with available experimental information. The results showed good agreement between the experimental data and the values predicted by the mathematical models. The results presented in this work did suggest that growth on small segregated drops may be more important than continuous phase growth on dissolved substrate.  相似文献   

8.
Multiple imputation has become a widely accepted technique to deal with the problem of incomplete data. Typically, imputation of missing values and the statistical analysis are performed separately. Therefore, the imputation model has to be consistent with the analysis model. If the data are analyzed with a mixture model, the parameter estimates are usually obtained iteratively. Thus, if the data are missing not at random, parameter estimation and treatment of missingness should be combined. We solve both problems by simultaneously imputing values using the data augmentation method and estimating parameters using the EM algorithm. This iterative procedure ensures that the missing values are properly imputed given the current parameter estimates. Properties of the parameter estimates were investigated in a simulation study. The results are illustrated using data from the National Health and Nutrition Examination Survey.  相似文献   

9.
10.
Computer simulations are useful tools to optimize marker-assisted breeding programs. The objective of our study was to investigate the closeness of computer simulations of the recurrent parent genome recovery with experimental data obtained in two marker-assisted backcrossing programs in rice (Orzya sativa L.). We simulated the breeding programs as they were practically carried out. In the simulations we estimated the frequency distributions of the recurrent parent genome proportion in the backcross populations. The simulated distributions were in good agreement with those obtained practically. The simulation results were also observed to be robust with respect to the choice of the mapping function and the accuracy of the linkage map. We conclude that computer simulations are a useful tool for pre-experiment estimation of selection response in marker-assisted backcrossing. Vanessa Prigge and Hans Peter Maurer contributed equally to this work.  相似文献   

11.
1.  The construction of a predictive metapopulation model includes three steps: the choice of factors affecting metapopulation dynamics, the choice of model structure, and finally parameter estimation and model testing.
2.  Unless the assumption is made that the metapopulation is at stochastic quasi-equilibrium and unless the method of parameter estimation of model parameters uses that assumption, estimates from a limited amount of data will usually predict a trend in metapopulation size.
3.  This implicit estimation of a trend occurs because extinction-colonization stochasticity, possibly amplified by regional stochasticity, leads to unequal numbers of observed extinction and colonization events during a short study period.
4.  Metapopulation models, such as those based on the logistic regression model, that rely on observed population turnover events in parameter estimation are sensitive to the implicit estimation of a trend.
5.  A new parameter estimation method, based on Monte Carlo inference for statistically implicit models, allows an explicit decision about whether metapopulation quasi-stability is assumed or not.
6. Our confidence in metapopulation model parameter estimates that have been produced from only a few years of data is decreased by the need to know before parameter estimation whether the metapopulation is in quasi-stable state or not.
7. The choice of whether metapopulation stability is assumed or not in parameter estimation should be done consciously. Typical data sets cover only a few years and rarely allow a statistical test of a possible trend. While making the decision about stability one should consider any information about the landscape history and species and metapopulation characteristics.  相似文献   

12.
Carboxy-fluorescein diacetate succinimidyl ester (CFSE) labeling is an important experimental tool for measuring cell responses to extracellular signals in biomedical research. However, changes of the cell cycle (e.g., time to division) corresponding to different stimulations cannot be directly characterized from data collected in CFSE-labeling experiments. A number of independent studies have developed mathematical models as well as parameter estimation methods to better understand cell cycle kinetics based on CFSE data. However, when applying different models to the same data set, notable discrepancies in parameter estimates based on different models has become an issue of great concern. It is therefore important to compare existing models and make recommendations for practical use. For this purpose, we derived the analytic form of an age-dependent multitype branching process model. We then compared the performance of different models, namely branching process, cyton, Smith–Martin, and a linear birth–death ordinary differential equation (ODE) model via simulation studies. For fairness of model comparison, simulated data sets were generated using an agent-based simulation tool which is independent of the four models that are compared. The simulation study results suggest that the branching process model significantly outperforms the other three models over a wide range of parameter values. This model was then employed to understand the proliferation pattern of CD4+ and CD8+ T cells under polyclonal stimulation.  相似文献   

13.
The nonlinear and 3 linearized forms of the integrated Michaelis-Menten equation were evaluated for their ability to provide reliable estimates of uptake kinetic parameters, when the initial substrate concentration (S0) is not error-free. Of the 3 linearized forms, the one where t/(S0–S) is regressed against ln(S0/S)/(S0–S) gave estimates ofV max and Km closest to the true population means of these parameters. Further, this linearization was the least sensitive of the 3 to errors (±1%) in S0. Our results illustrate the danger of relying on r2 values for choosing among the 3 linearized forms of the integrated Michaelis-Menten equation. Nonlinear regression analysis of progress curve data, when S0 is not free of error, was superior to even the best of the 3 linearized forms. The integrated Michaelis-Menten equation should not be used to estimateV max and Km when substrate production occurs concomitant with consumption of added substrate. We propose the use of a new equation for estimation of these parameters along with a parameter describing endogenous substrate production (R) for kinetic studies done with samples from natural habitats, in which the substrate of interest is an intermediate. The application of this new equation was illustrated for both simulated data and previously obtained H2 depletion data. The only means by whichV max, Km, and R may be evaluated from progress curve data using this new equation is via nonlinear regression, since a linearized form of this equation could not be derived. Mathematical components of computer programs written for fitting data to either of the above nonlinear models using nonlinear least squares analysis are presented.  相似文献   

14.
Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important implications in understanding and predicting the effects of temperature on the dynamics of populations.  相似文献   

15.
Effective estimation of parameters in biocatalytic reaction kinetic expressions are very important when building process models to enable evaluation of process technology options and alternative biocatalysts. The kinetic models used to describe enzyme‐catalyzed reactions generally include several parameters, which are strongly correlated with each other. State‐of‐the‐art methodologies such as nonlinear regression (using progress curves) or graphical analysis (using initial rate data, for example, the Lineweaver‐Burke plot, Hanes plot or Dixon plot) often incorporate errors in the estimates and rarely lead to globally optimized parameter values. In this article, a robust methodology to estimate parameters for biocatalytic reaction kinetic expressions is proposed. The methodology determines the parameters in a systematic manner by exploiting the best features of several of the current approaches. The parameter estimation problem is decomposed into five hierarchical steps, where the solution of each of the steps becomes the input for the subsequent step to achieve the final model with the corresponding regressed parameters. The model is further used for validating its performance and determining the correlation of the parameters. The final model with the fitted parameters is able to describe both initial rate and dynamic experiments. Application of the methodology is illustrated with a case study using the ω‐transaminase catalyzed synthesis of 1‐phenylethylamine from acetophenone and 2‐propylamine. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

16.
Since measurements of process variables are subject to measurements errors as well as process variability, data reconciliation is the procedure of optimally adjusting measured date so that the adjusted values obey the conservation laws and constraints. Thus, data reconciliation for dynamic systems is fundamental and important for control, fault detection, and system optimization. Attempts to successfully implement estimators are often hindered by serve process nonlinearities, complicated state constraints, and un-measurable perturbations. As a constrained minimization problem, the dynamic data reconciliation is dynamically carried out to product smoothed estimates with variances from the original data. Many algorithms are proposed to solve such state estimation such as the extended Kalman filter (EKF), the unscented Kalman filter, and the cubature Kalman filter (CKF). In this paper, we investigate the use of CKF algorithm in comparative with the EKF to solve the nonlinear dynamic data reconciliation problem. First we give a broad overview of the recursive nonlinear data dynamic reconciliation (RNDDR) scheme, then present an extension to the CKF algorithm, and finally address the issue of how to solve the constraints in the CKF approach. The CCRNDDR method is proposed by applying the RNDDR in the CKF algorithm to handle nonlinearity and algebraic constraints and bounds. As the sampling idea is incorporated into the RNDDR framework, more accurate estimates can obtained via the recursive nature of the estimation procedure. The performance of the CKF approach is compared with EKF and RNDDR on nonlinear process systems with constraints. The conclusion is that with an error optimization solution of the correction step, the reformulated CKF shows high performance on the selection of nonlinear constrained process systems. Simulation results show the CCRNDDR is an efficient, accurate and stable method for real-time state estimation for nonlinear dynamic processes.  相似文献   

17.
18.
Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy).This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable.  相似文献   

19.
In this study the possibility of using discard bovine bone as support for immobilization of Rhizopus oryzae lipase expressed in Pichia pastoris was analyzed. Discard bovine bone were milled and then subjected to a chemical treatment with acetone in order to remove lipids and blood traces. Two types of supports were evaluated: bovine bone and calcined bovine bone for 2 h at 600°C. Supports were characterized by: ICP, SEM, XRD, FTIR, XPS, and N2 adsorption isotherms. Calcined bovine bone presented appropriate characteristics for the lipase immobilization due to the removal of collagen: high porosity, large surface area and suitable porous structure. Biocatalysts were prepared with different initial enzyme load. For the equilibrium adsorption studies, the Langmuir isotherm was used to fit the data results. The immobilization occurs in monolayer to a value of 35 UA mg?1. The activities of biocatalysts were tested in transesterification reaction of olive oil. For the enzyme load used in the test, a final yield percentage of 49.6 was achieved after six methanol additions and 180 min of reaction, similar values were obtained using Relizyme as support. Therefore, the bovine bone discard is an economical and appropriate choice for use support immobilization of enzymes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1246–1253, 2016  相似文献   

20.
A Bayesian hierarchical approach is presented for the estimation of length‐weight relationships (LWR) in fishes. In particular, estimates are provided for the LWR parameters a and b in general as well as by body shape. These priors and existing LWR studies were used to derive species‐specific LWR parameters. In the case of data‐poor species, the analysis includes LWR studies of closely related species with the same body shape. This approach yielded LWR parameter estimates with measures of uncertainty for practically all known 32 000 species of fishes. Provided is a large LWR data set extracted from www.fishbase.org , the source code of the respective analyses, and ready‐to‐use tools for practitioners. This is presented as an example of a self‐learning online database where the addition of new studies improves the species‐specific parameter estimates, and where these parameter estimates inform the analysis of new data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号