首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synaptotagmin‐1 (syt1) is a Ca2+‐binding protein that functions in regulation of synaptic vesicle exocytosis at the synapse. Syt1 is expressed in many types of neurons well before synaptogenesis begins both in vivo and in vitro. To determine if expression of syt1 has a functional role in neuronal development before synapse formation, we examined the effects of syt1 overexpression and knockdown on the growth and branching of the axons of cultured primary embryonic day 8 chicken forebrain neurons. In vivo these neurons express syt1, and most have not yet extended axons. We present evidence that syt1 plays a role in regulating axon branching, while not regulating overall axon length. To study the effects of overexpression of syt1, we used adenovirus‐mediated infection to introduce a syt1‐YFP construct, or control GFP construct, into neurons. Syt1 levels were reduced using RNA interference. Overexpression of syt1 increased the formation of axonal filopodia and branches. Conversely, knockdown of syt1 decreased the number of axonal filopodia and branches. Time‐lapse analysis of filopodial dynamics in syt1‐overexpressing cells demonstrated that elevation of syt1 levels increased both the frequency of filopodial initiation and their lifespan. Taken together these data indicate that syt1 regulates the formation of axonal filopodia and branches before engaging in its conventional functions at the synapse. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

2.
Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low‐affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin‐positive (PV) interneurons. Nrg3 and ErbB4 are located pre‐ and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo. Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short‐term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4+ interneurons and affects short‐term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non‐neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4+ interneurons.  相似文献   

3.
We studied the lysophosphatidic acid receptor-1 (LPA1) gene, which we found to be expressed endogenously in cultured hippocampal neurons, and in vivo in young (1-week-old) rat brain slices. Overexpressed green fluorescent protein (GFP)-tagged, membrane-associated LPA1 accumulated in a punctate manner over the entire dendritic tree and caused an increase in dendritic spine density. About half of the dendritic spines in the LPA1-transfected neurons displayed distinct fluorescent puncta, and this subset of spines was also substantially larger than puncta-free, LPA1-transfected or control GFP spines. This phenotype could also be seen in cells transfected with a ligand-binding, defective mutant and is therefore not dependent on interaction with an ambient ligand. While spontaneous miniature excitatory synaptic currents were of the same amplitudes, they decayed slower in LPA1-transfected neurons compared with GFP controls. We propose that LPA1 may play a role in the formation and modulation of the dendritic spine synapse.  相似文献   

4.
Ethanol exposure during fetal development is a leading cause of long-term cognitive impairments. Studies suggest that ethanol exposure have deleterious effects on the hippocampus, a brain region that is important for learning and memory. Ethanol exerts its effects, in part, via alterations in glutamatergic neurotransmission, which is critical for the maturation of neuronal circuits during development. The current literature strongly supports the growing evidence that ethanol inhibits glutamate release in the neonatal CA1 hippocampal region. However, the exact molecular mechanism responsible for this effect is not well understood. In this study, we show that ethanol enhances endocannabinoid (EC) levels in cultured hippocampal neurons, possibly through calcium pathways. Acute ethanol depresses miniature post-synaptic current (mEPSC) frequencies without affecting their amplitude. This suggests that ethanol inhibits glutamate release. The CB1 receptors (CB1Rs) present on pre-synaptic neurons are not altered by acute ethanol. The CB1R antagonist SR 141716A reverses ethanol-induced depression of mEPSC frequency. Drugs that are known to enhance the in vivo function of ECs occlude ethanol effects on mEPSC frequency. Chelation of post-synaptic calcium by EGTA antagonizes ethanol-induced depression of mEPSC frequency. The activation of CB1R with the selective agonist WIN55,212-2 also suppresses the mEPSC frequency. This WIN55,212-2 effect is similar to the ethanol effects and is reversed by SR141716A. In addition, tetani-induced excitatory post-synaptic currents (EPSCs) are depressed by acute ethanol. SR141716A significantly reverses ethanol effects on evoked EPSC amplitude in a dual recording preparation. These observations, taken together, suggest the participation of ECs as retrograde messengers in the ethanol-induced depression of synaptic activities.  相似文献   

5.
6.
Docosahexaenoic acid (DHA, 22:6 n -3), the major polyunsaturated fatty acid accumulated in the brain during development, has been implicated in learning and memory, but underlying cellular mechanisms are not clearly understood. Here, we demonstrate that DHA significantly affects hippocampal neuronal development and synaptic function in developing hippocampi. In embryonic neuronal cultures, DHA supplementation uniquely promoted neurite growth, synapsin puncta formation and synaptic protein expression, particularly synapsins and glutamate receptors. In DHA-supplemented neurons, spontaneous synaptic activity was significantly increased, mostly because of enhanced glutamatergic synaptic activity. Conversely, hippocampal neurons from DHA-depleted fetuses showed inhibited neurite growth and synaptogenesis. Furthermore, n -3 fatty acid deprivation during development resulted in marked decreases of synapsins and glutamate receptor subunits in the hippocampi of 18-day-old pups with concomitant impairment of long-term potentiation, a cellular mechanism underlying learning and memory. While levels of synapsins and NMDA receptor subunit NR2A were decreased in most hippocampal regions, NR2A expression was particularly reduced in CA3, suggesting possible role of DHA in CA3-NMDA receptor-dependent learning and memory processes. The DHA-induced neurite growth, synaptogenesis, synapsin, and glutamate receptor expression, and glutamatergic synaptic function may represent important cellular aspects supporting the hippocampus-related cognitive function improved by DHA.  相似文献   

7.

Background

The functioning of the nervous system depends upon the specificity of its synaptic contacts. The mechanisms triggering the expression of the appropriate receptors on postsynaptic membrane and the role of the presynaptic partner in the differentiation of postsynaptic structures are little known.

Methods and Findings

To address these questions we cocultured murine primary muscle cells with several glutamatergic neurons, either cortical, cerebellar or hippocampal. Immunofluorescence and electrophysiology analyses revealed that functional excitatory synaptic contacts were formed between glutamatergic neurons and muscle cells. Moreover, immunoprecipitation and immunofluorescence experiments showed that typical anchoring proteins of central excitatory synapses coimmunoprecipitate and colocalize with rapsyn, the acetylcholine receptor anchoring protein at the neuromuscular junction.

Conclusions

These results support an important role of the presynaptic partner in the induction and differentiation of the postsynaptic structures.  相似文献   

8.
The actin-based dynamics of dendritic spines play a key role in synaptic plasticity, which underlies learning and memory. Although it is becoming increasingly clear that modulation of actin is critical for spine dynamics, the upstream molecular signals that regulate the formation and plasticity of spines are poorly understood. In non-neuronal cells, integrins are critical modulators of the actin cytoskeleton, but their function in the nervous system is not well characterized. Here we show that alpha5 integrin regulates spine morphogenesis and synapse formation in hippocampal neurons. Knockdown of alpha5 integrin expression using small interfering RNA decreased the number of dendritic protrusions, spines, and synapses. Expression of constitutively active or dominant negative alpha5 integrin also resulted in alterations in the number of dendritic protrusions, spines, and synapses. alpha5 integrin signaling regulates spine morphogenesis and synapse formation by a mechanism that is dependent on Src kinase, Rac, and the signaling adaptor GIT1. Alterations in the activity or localization of these molecules result in a significant decrease in the number of spines and synapses. Thus, our results point to a critical role for integrin signaling in regulating the formation of dendritic spines and synapses in hippocampal neurons.  相似文献   

9.
Coordinated development of excitatory and inhibitory synapses is crucial for normal function of neuronal circuits. Using homo- and heterochronic cultures of hippocampal neurons, we compared the formation of glutamatergic and GABAergic synapses at different stages and asked whether the age of dendrites affects their ability to accept new glutamatergic and GABAergic synapses. Neurons were transfected with either CFP-actin as a dendritic marker or GFP-synaptophysin as a presynaptic marker. We found that GFP-synaptophysin clusters formed on CFP-actin-labeled dendrites at similar density regardless of pre- and postsynaptic cell type or the age of dendrites (0-2 weeks) upon co-culturing. Therefore, the age of mature dendrites does not affect their ability to accept new synapses. Because GABAergic transmission switches from depolarizing to hyperpolarizing during 1-2 weeks in these cultures, our observations also suggest that this developmental switch does not alter the formation of GABAergic synapses.  相似文献   

10.
11.
Postnatal development of glutamate decarboxylase was studied in the rat cerebral cortex. Two methods were used: estimation of the enzymatic activity of glutamate decarboxylase in homogenates of developing cortical tissue and visualization of structures containing glutamate decarboxylase-like immunoreactivity. Glutamate decarboxylase-like immunoreactivity appeared first in perikarya and dendrites and only later in axons and axon varicosities. The most rapid increase in the glutamate decarboxylase activity took place during the second postnatal week and this coincided with a rapid increase in the density of axon varicosities containing glutamate decarboxylase-like immunoreactivity but preceded the most rapid phase in the formation of GABAergic synapses by several days. However, there was a change in the characteristics of glutamate decarboxylase which correlated with GABA synaptogenesis: two fractions of glutamate decarboxylase with different sensitivities to the activating effects of Triton X-100 could be distinguished as from about the time when most of the GABAergic synapses are formed.  相似文献   

12.
-Aminobutyric acid (GABA) and L-glutamic acid (L-Glu) are transmitters of GABAergic and glutamatergic neurons in the enteric interneurons, targeting excitatory or inhibitory GABA receptors or glutamate receptors that modulate gastric motility and mucosal function. GABAergic and glutamatergic neuron immunoreactivity have been found in cholinergic enteric neurons in the stomach. GABA and L-Glu may also subserve hormonal and paracrine signaling. Disruption in gastrointestinal function following perturbation of enteric GABA receptors and glutamate receptors presents potential new target sites for drug development.  相似文献   

13.
SNAP‐25 is a key component of the synaptic‐vesicle fusion machinery, involved in several psychiatric diseases including schizophrenia and ADHD. SNAP‐25 protein expression is lower in different brain areas of schizophrenic patients and in ADHD mouse models. How the reduced expression of SNAP‐25 alters the properties of synaptic transmission, leading to a pathological phenotype, is unknown. We show that, unexpectedly, halved SNAP‐25 levels at 13–14 DIV not only fail to impair synaptic transmission but instead enhance evoked glutamatergic neurotransmission. This effect is possibly dependent on presynaptic voltage‐gated calcium channel activity and is not accompanied by changes in spontaneous quantal events or in the pool of readily releasable synaptic vesicles. Notably, synapses of 13–14 DIV neurons with reduced SNAP‐25 expression show paired‐pulse depression as opposed to paired‐pulse facilitation occurring in their wild‐type counterparts. This phenotype disappears with synapse maturation. As alterations in short‐term plasticity represent a new mechanism contributing to cognitive impairments in intellectual disabilities, our data provide mechanistic clues for neuronal circuit alterations in psychiatric diseases characterized by reduced expression of SNAP‐25.  相似文献   

14.
Postsynaptic receptor scaffold proteins play an important role for concentrating receptor molecules in postsynaptic membranes of central nervous system synapses. In particular, clustering of glycine receptors and different types of GABAA-receptors depends on the scaffold protein gephyrin, which is thought to anchor these receptors to the cytoskeleton. Eukaryotic elongation factor 1A (eEF1A) is a component of the protein synthesis machinery. In addition, it binds and bundles actin and was shown to interact with microtubules. Therefore, it might be involved in regulating the cytoskeletal dynamics in neurons and thereby modulate receptor cluster formation and/or maintenance. In this study, we demonstrate partial colocalization of gephyrin and F-actin along filamentous structures in rat hippocampal neurons. Overexpression of eEF1A in cultured hippocampal neurons results in a significant increase in number, size and density of postsynaptic gephyrin clusters after 21 days in vitro. These findings suggest that eEF1A contributes to the morphology of postsynaptic membrane specializations at inhibitory synapses.  相似文献   

15.
Agrin plays an organizing role in the formation of sympathetic synapses   总被引:5,自引:0,他引:5  
Agrin is a nerve-derived factor that directs neuromuscular synapse formation, however its role in regulating interneuronal synaptogenesis is less clear. Here, we examine agrin's role in synapse formation between cholinergic preganglionic axons and sympathetic neurons in the superior cervical ganglion (SCG) using agrin-deficient mice. In dissociated cultures of SCG neurons, we found a significant decrease in the number of synapses with aggregates of presynaptic synaptophysin and postsynaptic neuronal acetylcholine receptor among agrin-deficient neurons as compared to wild-type neurons. Moreover, the levels of pre- and postsynaptic markers at the residual synapses in agrin-deficient SCG cultures were also reduced, and these defects were rescued by adding recombinant neural agrin to the cultures. Similarly, we observed a decreased matching of pre- and postsynaptic markers in SCG of agrin-deficient embryos, reflecting a decrease in the number of differentiated synapses in vivo. Finally, in electrophysiological experiments, we found that paired-pulse depression was more pronounced and posttetanic potentiation was significantly greater in agrin-deficient ganglia, indicating that synaptic transmission is also defective. Together, these findings indicate that neural agrin plays an organizing role in the formation and/or differentiation of interneuronal, cholinergic synapses.  相似文献   

16.
Advances in cell biology and biophysics revealed that cellular membranes consist of multiple microdomains with specific sets of components such as lipid rafts and TEMs (tetraspanin‐enriched microdomains). An increasing number of enveloped viruses have been shown to utilize these microdomains during their assembly. Among them, association of HIV‐1 (HIV type 1) and other retroviruses with lipid rafts and TEMs within the PM (plasma membrane) is well documented. In this review, I describe our current knowledge on interrelationships between PM microdomain organization and the HIV‐1 particle assembly process. Microdomain association during virus particle assembly may also modulate subsequent virus spread. Potential roles played by microdomains will be discussed with regard to two post‐assembly events, i.e., inhibition of virus release by a raft‐associated protein BST‐2/tetherin and cell‐to‐cell HIV‐1 transmission at virological synapses.  相似文献   

17.
18.
Docosahexaenoic acid promotes neurite growth in hippocampal neurons   总被引:3,自引:0,他引:3  
Docosahexanoic acid (22:6n-3; DHA) deficiency during development is associated with impairment in learning and memory, suggesting an important role of DHA in neuronal development. Here we provide evidence that DHA promotes neuronal differentiation in rat embryonic hippocampal primary cultures. DHA deficiency in vitro was spontaneously induced by culturing hippocampal cells in chemically defined medium. DHA supplementation improved DHA levels to values observed in freshly isolated hippocampus. We found that DHA supplementation in culture increased the population of neurons with longer neurite length per neuron and with higher number of branches. However, supplementation with arachidonic, oleic or docosapentaenoic acid did not have any effect, indicating specificity of the DHA action on neurite growth. Furthermore, hippocampal cultures obtained from n-3 fatty acid deficient animals contained a lower DHA level and a neuronal population with shorter neurite length per neuron in comparison to those obtained from animals with adequate n-3 fatty acids. DHA supplementation to the deficient group recovered the neurite length to the level similar to n-3 fatty acid adequate cultures. Our data demonstrates that DHA uniquely promotes neurite growth in hippocampal neurons. Inadequate neurite development due to DHA deficiency may contribute to the cognitive impairment associated with n-3 fatty acid deficiency.  相似文献   

19.
Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N‐cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post‐translational cleavage of the prodomain affects synapse formation, we imaged Rohon‐Beard cells in zebrafish embryos expressing GFP‐tagged wild‐type N‐cadherin (NCAD‐GFP) or a GFP‐tagged N‐cadherin mutant expressing an uncleavable prodomain (PRON‐GFP) rendering it nonadhesive. NCAD‐GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON‐GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N‐cadherin serves to stabilize pre‐ to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N‐cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

20.
While a beta-sheet-rich form of the prion protein (PrPSc) causes neurodegeneration, the biological activity of its precursor, the cellular prion protein (PrPC), has been elusive. We have studied the effect of purified recombinant prion protein (recPrP) on rat fetal hippocampal neurons in culture. Overnight exposure to Syrian hamster or mouse recPrP, folded into an alpha-helical-rich conformation similar to that of PrPC, resulted in a 1.9-fold increase in neurons with a differentiated axon, a 13.5-fold increase in neurons with differentiated dendrites, a fivefold increase in axon length, and the formation of extensive neuronal circuitry. Formation of synaptic-like contacts was increased by a factor of 4.6 after exposure to recPrP for 7 days. Neither the N-terminal nor C-terminal domains of recPrP nor the PrP paralogue doppel (Dpl) enhanced the polarization of neurons. Inhibitors of protein kinase C (PKC) and of Src kinases, including p59Fyn, blocked the effect of recPrP on axon elongation, while inhibitors of phosphatidylinositol 3-kinase showed a partial inhibition, suggesting that signaling cascades involving these kinases are candidates for transduction of recPrP-mediated signals. The results predict that full-length PrPC functions as a growth factor involved in development of neuronal polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号