首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroligins are cell adhesion molecules that interact with neurexins on adjacent cells to promote glutamatergic and GABAergic synapse formation in culture. We show here that neuroligin enhances nicotinic synapses on neurons in culture, increasing synaptic input. When neuroligin is overexpressed in neurons, the extracellular domain induces presynaptic specializations in adjacent cholinergic neurons as visualized by SV2 puncta. The intracellular domain is required to translate the SV2 puncta into synaptic input as reflected by increases in the frequency of spontaneous mini-synaptic currents. The PDZ-binding motif of neuroligin is not needed for these effects. Together, the extracellular and proximal intracellular domains of neuroligin are sufficient to induce presynaptic specializations, align them over postsynaptic receptor clusters, and increase synaptic function. Manipulation of endogenous neuroligin with beta-neurexin-expressing cells confirms its presence; repressing function with dominant negative constructs and inhibitory shRNA shows that endogenous neuroligin helps confer functionality on existing nicotinic synaptic contacts. Endogenous neuroligin does not appear to be required, however, for initial formation of the contacts, suggesting that other components under these conditions can also initiate synapse formation. The results indicate that postsynaptic neuroligin is important for functional nicotinic synapses on neurons and that the effects achieved will likely depend on neuroligin levels.  相似文献   

2.
A lack of methods for measuring the protein compositions of individual synapses in?situ has so far hindered the exploration and exploitation of synapse molecular diversity. Here, we describe the use of array tomography, a new high-resolution proteomic imaging method, to determine the composition of glutamate and GABA synapses in somatosensory cortex of Line-H-YFP Thy-1 transgenic mice. We find that virtually all synapses are recognized by antibodies to the presynaptic phosphoprotein synapsin I, while antibodies to 16 other synaptic proteins discriminate among 4 subtypes of glutamatergic synapses and GABAergic synapses. Cell-specific YFP expression in the YFP-H mouse line allows synapses to be assigned to specific presynaptic and postsynaptic partners and reveals that a subpopulation of spines on layer 5 pyramidal cells receives both VGluT1-subtype glutamatergic and GABAergic synaptic inputs. These results establish a means for the high-throughput acquisition of proteomic data from individual cortical synapses in?situ.  相似文献   

3.
Schinder AF  Berninger B  Poo M 《Neuron》2000,25(1):151-163
The role of the target cell in neurotrophin-induced modifications of glutamatergic synaptic transmission was examined in cultured hippocampal neurons. Brain-derived neurotrophic factor (BDNF) induced rapid and persistent potentiation of evoked glutamate release when the postsynaptic neuron was glutamatergic, or excitatory (E-->E), but not when it was GABAergic, or inhibitory (E-->1). This target-specific action of BDNF was also found at divergent outputs of a single presynaptic neuron innervating both glutamatergic and GABAergic neurons, suggesting that individual terminals can be independently modified. Surprisingly, BDNF increased the frequency of miniature postsynaptic currents at both E-->E and E-->I, although it had no effect on evoked currents at E-->I. Finally, potentiation by neurotrophin-3 (NT-3) was also target specific. The selective effect at E-->E suggests that retrograde signaling by the postsynaptic target cell endows a localized presynaptic action of neurotrophins.  相似文献   

4.
The functional balance of glutamatergic and GABAergic signaling in neuronal cortical circuits is under homeostatic control. That is, prolonged alterations of global network activity leads to opposite changes in quantal amplitude at glutamatergic and GABAergic synapses. Such scaling of excitatory and inhibitory transmission within cortical circuits serves to restore and maintain a constant spontaneous firing rate of pyramidal neurons. Our recent work shows that this includes alterations in the levels of expression of vesicular glutamate (VGLUT1 and VGLUT2) and GABA (VIAAT) transporters. Other vesicle markers, such as synaptophysin or synapsin, are not regulated in this way. Endogenous regulation at the level of mRNA and synaptic protein controls the number of transporters per vesicle and hence, the level of vesicle filling with transmitter. Bidirectional and opposite activity-dependent regulation of VGLUT1 and VIAAT expression would serve to adjust the balance of glutamate and GABA release and therefore the level of postsynaptic receptor saturation. In some excitatory neurons and synapses, co-expression of VGLUT1 and VGLUT2 occurs. Bidirectional and opposite changes in the levels of two excitatory vesicular transporters would enable individual neocortical neurons to scale up or scale down the level of vesicular glutamate storage, and thus, the amount available for release at individual synapses. Regulated vesicular transmitter storage and release via selective changes in the level of expression of vesicular glutamate and GABA transporters indicates that homeostatic plasticity of synaptic strength at cortical synapses includes presynaptic elements.  相似文献   

5.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron–neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin‐deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin‐deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma‐aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age‐matched wild‐type neurons during the first 3 weeks in culture. These results demonstrate that neuron‐specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 547–557, 1999  相似文献   

6.
Yu J  Qian H  Chen N  Wang JH 《PloS one》2011,6(9):e25219

Background

The neurons and synapses work coordinately to program the brain codes of controlling cognition and behaviors. Spike patterns at the presynaptic neurons regulate synaptic transmission. The quantitative regulations of synapse dynamics in spike encoding at the postsynaptic neurons remain unclear.

Methodology/Principal Findings

With dual whole-cell recordings at synapse-paired cells in mouse cortical slices, we have investigated the regulation of synapse dynamics to neuronal spike encoding at cerebral circuits assembled by pyramidal neurons and GABAergic ones. Our studies at unitary synapses show that postsynaptic responses are constant over time, such as glutamate receptor-channel currents at GABAergic neurons and glutamate transport currents at astrocytes, indicating quantal glutamate release. In terms of its physiological impact, our results demonstrate that the signals integrated from quantal glutamatergic synapses drive spike encoding at GABAergic neurons reliably, which in turn precisely set spike encoding at pyramidal neurons through feedback inhibition.

Conclusion/Significance

Our studies provide the evidences for the quantal glutamate release to drive the spike encodings precisely in cortical circuits, which may be essential for programming the reliable codes in the brain to manage well-organized behaviors.  相似文献   

7.
Neurexin-neuroligin signaling in synapse development   总被引:1,自引:0,他引:1  
Neurexins and neuroligins are emerging as central organizing molecules for excitatory glutamatergic and inhibitory GABAergic synapses in mammalian brain. They function as cell adhesion molecules, bridging the synaptic cleft. Remarkably, each partner can trigger formation of a hemisynapse: neuroligins trigger presynaptic differentiation and neurexins trigger postsynaptic differentiation. Recent protein interaction assays and cell culture studies indicate a selectivity of function conferred by alternative splicing in both partners. An insert at site 4 of beta-neurexins selectively promotes GABAergic synaptic function, whereas an insert at site B of neuroligin 1 selectively promotes glutamatergic synaptic function. Initial knockdown and knockout studies indicate that neurexins and neuroligins have an essential role in synaptic transmission, particularly at GABAergic synapses, but further studies are needed to assess the in vivo functions of these complex protein families.  相似文献   

8.
The photoreceptor ribbon synapse is a highly specialized glutamatergic synapse designed for the continuous flow of synaptic vesicles to the neurotransmitter release site. The molecular mechanisms underlying ribbon synapse formation are poorly understood. We have investigated the role of the presynaptic cytomatrix protein Bassoon, a major component of the photoreceptor ribbon, in a mouse retina deficient of functional Bassoon protein. Photoreceptor ribbons lacking Bassoon are not anchored to the presynaptic active zones. This results in an impaired photoreceptor synaptic transmission, an abnormal dendritic branching of neurons postsynaptic to photoreceptors, and the formation of ectopic synapses. These findings suggest a critical role of Bassoon in the formation and the function of photoreceptor ribbon synapses of the mammalian retina.  相似文献   

9.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron-neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin-deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin-deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma-aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age-matched wild-type neurons during the first 3 weeks in culture. These results demonstrate that neuron-specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction.  相似文献   

10.
The polyadic synapse, where a single presynaptic active zone associates with two or more postsynaptic cells, exists in both mammals and invertebrates. An important but unresolved question is whether synaptic transmission occurs between the presynaptic site and its various postsynaptic partners. Using the dual whole-cell voltage clamp technique, we analyzed miniature postsynaptic currents (mPSCs or minis) at the C. elegans neuromuscular junction (NMJ), which is a polyadic synapse. We found that neighboring muscle cells at the same position along the body axis had high frequencies of concurrent mPSCs, which could not be explained by pure chance. Although body-wall muscle cells are electrically coupled, the high frequency of concurrent mPSCs was not due to electrical coupling because there was no correlation between the frequency of concurrent mPSCs and the degree of electrical coupling; the rise time of concurrent mPSCs was identical to that of nonconcurrent mPSCs but distinct from that of junctional currents (I(j)); and a mutant defective in electrical coupling showed normal frequency of concurrent mPSCs. Our analyses suggest that a single quantum of neurotransmitter may cause mPSCs in multiple postsynaptic cells at polyadic synapses, and that high-fidelity synaptic transmission occurs between the presynaptic site and its various postsynaptic partners. Thus, polyadic synapses could be a distinct mechanism for synaptic divergence and for synchronizing activities of postsynaptic cells.  相似文献   

11.
For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non‐synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high‐resolution biochemical analyses of specific synapse subpopulations. Employing knock‐in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high‐resolution biochemical analyses of specific synapse subpopulations in health and disease.  相似文献   

12.
Recent findings demonstrate that synaptic channels are directly involved in the formation and maintenance of synapses by interacting with synapse organizers. The synaptic channels on the pre- and postsynaptic membranes possess non-conducting roles in addition to their functional roles as ion-conducting channels required for synaptic transmission. For example, presynaptic voltage-dependent calcium channels link the target-derived synapse organizer laminin β2 to cytomatrix of the active zone and function as scaffolding proteins to organize the presynaptic active zones. Furthermore, postsynaptic δ2-type glutamate receptors organize the synapses by forming transsynaptic protein complexes with presynaptic neurexins through synapse organizer cerebellin 1 precursor proteins. Interestingly, the synaptic clustering of AMPA receptors is regulated by neuronal activity-regulated pentraxins, while postsynaptic differentiation is induced by the interaction of postsynaptic calcium channels and thrombospondins. This review will focus on the non-conducting functions of ion-channels that contribute to the synapse formation in concert with synapse organizers and active-zone-specific proteins.  相似文献   

13.
Recent findings demonstrate that synaptic channels are directly involved in the formation and maintenance of synapses by interacting with synapse organizers. The synaptic channels on the pre- and postsynaptic membranes possess non-conducting roles in addition to their functional roles as ion-conducting channels required for synaptic transmission. For example, presynaptic voltage-dependent calcium channels link the target-derived synapse organizer laminin β2 to cytomatrix of the active zone and function as scaffolding proteins to organize the presynaptic active zones. Furthermore, postsynaptic δ2-type glutamate receptors organize the synapses by forming transsynaptic protein complexes with presynaptic neurexins through synapse organizer cerebellin 1 precursor proteins. Interestingly, the synaptic clustering of AMPA receptors is regulated by neuronal activity-regulated pentraxins, while postsynaptic differentiation is induced by the interaction of postsynaptic calcium channels and thrombospondins. This review will focus on the non-conducting functions of ion-channels that contribute to the synapse formation in concert with synapse organizers and active-zone-specific proteins.  相似文献   

14.
Li B  Woo RS  Mei L  Malinow R 《Neuron》2007,54(4):583-597
Neuregulin-1 (NRG1) signaling participates in numerous neurodevelopmental processes. Through linkage analysis, nrg1 has been associated with schizophrenia, although its pathophysiological role is not understood. The prevailing models of schizophrenia invoke hypofunction of the glutamatergic synapse and defects in early development of hippocampal-cortical circuitry. Here, we show that the erbB4 receptor, as a postsynaptic target of NRG1, plays a key role in activity-dependent maturation and plasticity of excitatory synaptic structure and function. Synaptic activity leads to the activation and recruitment of erbB4 into the synapse. Overexpressed erbB4 selectively enhances AMPA synaptic currents and increases dendritic spine size. Preventing NRG1/erbB4 signaling destabilizes synaptic AMPA receptors and leads to loss of synaptic NMDA currents and spines. Our results indicate that normal activity-driven glutamatergic synapse development is impaired by genetic deficits in NRG1/erbB4 signaling leading to glutamatergic hypofunction. These findings link proposed effectors in schizophrenia: NRG1/erbB4 signaling perturbation, neurodevelopmental deficit, and glutamatergic hypofunction.  相似文献   

15.
Gephyrin is a scaffold protein essential for stabilizing glycine and GABA(A) receptors at inhibitory synapses. Here, recombinant intrabodies against gephyrin (scFv-gephyrin) were used to assess whether this protein exerts a transynaptic action on GABA and glutamate release. Pair recordings from interconnected hippocampal cells in culture revealed a reduced probability of GABA release in scFv-gephyrin-transfected neurons compared with controls. This effect was associated with a significant decrease in VGAT, the vesicular GABA transporter, and in neuroligin 2 (NLG2), a protein that, interacting with neurexins, ensures the cross-talk between the post- and presynaptic sites. Interestingly, hampering gephyrin function also produced a significant reduction in VGLUT, the vesicular glutamate transporter, an effect accompanied by a significant decrease in frequency of miniature excitatory postsynaptic currents. Overexpressing NLG2 in gephyrin-deprived neurons rescued GABAergic but not glutamatergic innervation, suggesting that the observed changes in the latter were not due to a homeostatic compensatory mechanism. Pulldown experiments demonstrated that gephyrin interacts not only with NLG2 but also with NLG1, the isoform enriched at excitatory synapses. These results suggest a key role of gephyrin in regulating transynaptic signaling at both inhibitory and excitatory synapses.  相似文献   

16.
Remodeling of synaptic actin induced by photoconductive stimulation.   总被引:11,自引:0,他引:11  
M A Colicos  B E Collins  M J Sailor  Y Goda 《Cell》2001,107(5):605-616
Use-dependent synapse remodeling is thought to provide a cellular mechanism for encoding durable memories, yet whether activity triggers an actual structural change has remained controversial. We use photoconductive stimulation to demonstrate activity-dependent morphological synaptic plasticity by video imaging of GFP-actin at individual synapses. A single tetanus transiently moves presynaptic actin toward and postsynaptic actin away from the synaptic junction. Repetitive spaced tetani induce glutamate receptor-dependent stable restructuring of synapses. Presynaptic actin redistributes and forms new puncta that label for an active synapse marker FM5-95 within 2 hr. Postsynaptic actin sprouts projections toward the new presynaptic actin puncta, resembling the axon-dendrite interaction during synaptogenesis. Our results indicate that activity-dependent presynaptic structural plasticity facilitates the formation of new active presynaptic terminals.  相似文献   

17.
Glutamate and GABA mediate most of the excitatory and inhibitory synaptic transmission; they are taken up and accumulated in synaptic vesicles by specific vesicular transporters named VGLUT1-3 and VGAT, respectively. Recent studies show that VGLUT2 and VGLUT3 are co-expressed with VGAT. Because of the relevance this information has for our understanding of synaptic physiology and plasticity, we investigated whether VGLUT1 and VGAT are co-expressed in rat cortical neurons. In cortical cultures and layer V cortical terminals we observed a population of terminals expressing VGLUT1 and VGAT. Post-embedding immunogold studies showed that VGLUT1+/VGAT+ terminals formed both symmetric and asymmetric synapses. Triple-labeling studies revealed GABAergic synapses expressing VGLUT1 and glutamatergic synapses expressing VGAT. Immunoisolation studies showed that anti-VGAT immunoisolated vesicles contained VGLUT1 and anti-VGLUT1 immunoisolated vesicles contained VGAT. Finally, vesicles containing VGAT resident in glutamatergic terminals undergo active recycling. In conclusion, we demonstrate that in neocortex VGLUT1 and VGAT are co-expressed in a subset of axon terminals forming both symmetric and asymmetric synapses, that VGLUT1 and VGAT are sorted to the same vesicles and that vesicles at synapses expressing the vesicular heterotransporter participate in the exo-endocytotic cycle.  相似文献   

18.
Synaptogenesis, the generation and maturation of functional synapses between nerve cells, is an essential step in the development of neuronal networks in the brain. It is thought to be triggered by members of the neuroligin family of postsynaptic cell adhesion proteins, which may form transsynaptic contacts with presynaptic alpha- and beta-neurexins and have been implicated in the etiology of autism. We show that deletion mutant mice lacking neuroligin expression die shortly after birth due to respiratory failure. This respiratory failure is a consequence of reduced GABAergic/glycinergic and glutamatergic synaptic transmission and network activity in brainstem centers that control respiration. However, the density of synaptic contacts is not altered in neuroligin-deficient brains and cultured neurons. Our data show that neuroligins are required for proper synapse maturation and brain function, but not for the initial formation of synaptic contacts.  相似文献   

19.
GABA-mediated synaptic inhibition is crucial in neural circuit operations. In mammalian brains, the development of inhibitory synapses and innervation patterns is often a prolonged postnatal process, regulated by neural activity. Emerging evidence indicates that gamma-aminobutyric acid (GABA) acts beyond inhibitory transmission and regulates inhibitory synapse development. Indeed, GABA(A) receptors not only function as chloride channels that regulate membrane voltage and conductance but also play structural roles in synapse maturation and stabilization. The link from GABA(A) receptors to postsynaptic and presynaptic adhesion is probably mediated, partly by neuroligin-reurexin interactions, which are potent in promoting GABAergic synapse formation. Therefore, similar to glutamate signaling at excitatory synapse, GABA signaling may coordinate maturation of presynaptic and postsynaptic sites at inhibitory synapses. Defining the many steps from GABA signaling to receptor trafficking/stability and neuroligin function will provide further mechanistic insights into activity-dependent development and possibly plasticity of inhibitory synapses.  相似文献   

20.
Ehlers MD  Heine M  Groc L  Lee MC  Choquet D 《Neuron》2007,54(3):447-460
Synaptic activity regulates the postsynaptic accumulation of AMPA receptors over timescales ranging from minutes to days. Indeed, the regulated trafficking and mobility of GluR1 AMPA receptors underlies many forms of synaptic potentiation at glutamatergic synapses throughout the brain. However, the basis for synapse-specific accumulation of GluR1 is unknown. Here we report that synaptic activity locally immobilizes GluR1 AMPA receptors at individual synapses. Using single-molecule tracking together with the silencing of individual presynaptic boutons, we demonstrate that local synaptic activity reduces diffusional exchange of GluR1 between synaptic and extraynaptic domains, resulting in postsynaptic accumulation of GluR1. At neighboring inactive synapses, GluR1 is highly mobile with individual receptors frequently escaping the synapse. Within the synapse, spontaneous activity confines the diffusional movement of GluR1 to restricted subregions of the postsynaptic membrane. Thus, local activity restricts GluR1 mobility on a submicron scale, defining an input-specific mechanism for regulating AMPA receptor composition and abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号