共查询到20条相似文献,搜索用时 15 毫秒
1.
The Eph family of receptor tyrosine kinases and their ‘ligands’, the ephrins, have been shown to play key roles in a number of different developmental processes such as cell migration, boundary formation, axon guidance, synapse formation and vasculogenesis. Here, we summarize recent findings derived from investigating the role of the EphA family during development of the retinotectal and vomeronasal projection uncovering a role of ephrin-A molecules as axon guidance receptors. 相似文献
2.
Eph受体是已知最大的酪氨酸蛋白激酶受体家族,Eph受体和其膜附着型配体(ephrin)在发育过程中呈现不同的表达模式,近来研究证明,Eph受体和其配体在包括神经网络形成,神经管和轴旁中胚层的成型(patterning),细胞迁移导向和轴突路径导引,血管形成等许多的发育过程中起重要作用.Eph受体及其配体也与肿瘤发生有关,因此深入分析这些分子尤其在肿瘤细胞生长中的功能而应用于治疗具有重要的临床意义. 相似文献
3.
We show that nitric oxide (NO) from applied NO-donating chemicals induces collapse of ganglion cell axonal growth cones extending from explants of tadpole retina in culture. Peroxynitrite, a neurotoxic product of NO and superoxide reaction, did not induce collapse, and oxyhemoglobin, which binds NO, blocked the highly effective collapsing activity of the NO donor S-nitrosocysteine. Membrane-permeable analogs of cyclic guanosine monophosphate had no collapsing activity. Inhibitors of NO synthase did not induce collapse. NO is a potential retrograde messenger through which postsynaptic neurons signal to their inputs to modify synaptic efficacy following NMDA receptor activation. Our results suggest a role for NO as such a messenger during development of the retinotectal projection. © 1996 John Wiley & Sons, Inc. 相似文献
4.
《Cell Adhesion & Migration》2013,7(4):360-365
The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, and mediate many other cell-cell communication events. The Ephs and ephrins both localize to the plasma membrane and, upon cell-cell contact, form extensive signaling assemblies at the contact sites. Recent structural, biochemical and cell-biological studies revealed that these assemblies are generated not only via Eph-ephrin interactions, but also via homotypic interactions between neighboring receptor molecules. In addition, Eph-Eph interactions mediate receptor pre-clustering, which ensures fast and efficient activation once ligands come into contact range. Here we summarize the current knowledge about the homotypic Eph-Eph interactions and discuss how they could modulate the initiation of Eph/ephrin signaling. 相似文献
5.
The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, and mediate many other cell-cell communication events. The Ephs and ephrins both localize to the plasma membrane and, upon cell-cell contact, form extensive signaling assemblies at the contact sites. Recent structural, biochemical and cell-biological studies revealed that these assemblies are generated not only via Eph-ephrin interactions, but also via homotypic interactions between neighboring receptor molecules. In addition, Eph-Eph interactions mediate receptor pre-clustering, which ensures fast and efficient activation once ligands come into contact range. Here we summarize the current knowledge about the homotypic Eph-Eph interactions and discuss how they could modulate the initiation of Eph/ephrin signaling. 相似文献
6.
7.
8.
Eph receptor tyrosine kinases play a critical role in embryonic patterning and angiogenesis. In the adult, they are involved in carcinogenesis and pathological neovascularization. However, the mechanisms underlying their role in tumor formation and metastasis remain to be defined. Here, we demonstrated that stimulation of EphB1 with ephrinB1/Fc led to a marked downregulation of EphB1 protein, a process blocked by the lysosomal inhibitor bafilomycin. Following ephrinB1 stimulation, the ubiquitin ligase Cbl was recruited by EphB1 and then phosphorylated. Both Cbl phosphorylation and EphB1 ubiquitination were blocked by the Src inhibitor PP2. Overexpression of wild-type Cbl, but not of 70Z mutant lacking ligase activity, enhanced EphB1 ubiquitination and degradation. This negative regulation required the tyrosine kinase activity of EphB1 as kinase-dead EphB1-K652R was resistant to Cbl. Glutathione S-transferase binding experiments showed that Cbl bound to EphB1 through its tyrosine kinase-binding domain. In aggregate, we demonstrated that Cbl induces the ubiquitination and lysosomal degradation of activated EphB1, a process requiring EphB1 and Src kinase activity. To our knowledge, this is the first study dissecting the molecular mechanisms leading to EphB1 downregulation, thus paving the way to new means of modulating their angiogenic and tumorigenic properties. 相似文献
9.
X-ray irradiation influences metastatic properties of tumor cells and, moreover, metastasis and cellular motility can be modified by members of the Eph receptor/ephrin family of receptor tyrosine kinases. We hypothesized that irradiation-induced changes in cellular properties relevant for metastasis in melanoma cells could be mediated by Eph receptor/ephrin signaling. In this pilot study, we analyzed one pre-metastatic (Mel-Juso) and three metastatic human melanoma (Mel-Juso-L3, A375, and A2058) cells lines and predominantly found anti-metastatic effects of X-ray irradiation with impaired cell growth, clonal growth and motility. Additionally, we observed an irradiation-induced increase in adhesion paralleled by a decrease in migration in Mel-Juso and Mel-Juso-L3 cells and, in part, also in A375 cells. We further demonstrate a decrease of EphA2 both in expression and activity at 7 d after irradiation paralleled by an upregulation of EphA3. Analyzing downstream signaling after irradiation, we detected decreased Src kinase phosphorylation, but unchanged focal adhesion kinase (FAK) phosphorylation, indicating, in part, irradiation-induced downregulation of signaling via the EphA2-Src-FAK axis in melanoma cells. However, to which extent this finding contributes to the modification of metastasis-relevant cellular properties remains to be elucidated. 相似文献
10.
《Cell Adhesion & Migration》2013,7(2):113-125
X-ray irradiation influences metastatic properties of tumor cells and, moreover, metastasis and cellular motility can be modified by members of the Eph receptor/ephrin family of receptor tyrosine kinases. We hypothesized that irradiation-induced changes in cellular properties relevant for metastasis in melanoma cells could be mediated by Eph receptor/ephrin signaling. In this pilot study, we analyzed one pre-metastatic (Mel-Juso) and three metastatic human melanoma (Mel-Juso-L3, A375, and A2058) cells lines and predominantly found anti-metastatic effects of X-ray irradiation with impaired cell growth, clonal growth and motility. Additionally, we observed an irradiation-induced increase in adhesion paralleled by a decrease in migration in Mel-Juso and Mel-Juso-L3 cells and, in part, also in A375 cells. We further demonstrate a decrease of EphA2 both in expression and activity at 7 d after irradiation paralleled by an upregulation of EphA3. Analyzing downstream signaling after irradiation, we detected decreased Src kinase phosphorylation, but unchanged focal adhesion kinase (FAK) phosphorylation, indicating, in part, irradiation-induced downregulation of signaling via the EphA2-Src-FAK axis in melanoma cells. However, to which extent this finding contributes to the modification of metastasis-relevant cellular properties remains to be elucidated. 相似文献
11.
Many external signals influence growth cone motility, pathfinding, and the formation of synapses that lead to the final map formation of the retinotectal system. Chick temporal retinal ganglion cell axons (RGCs) collapse and retract after encountering posterior tectal cells in vitro. During this process lateral extensions appear along the RGC axonal shaft. Lateral extensions appear as nascent interstitial axonal branches and also as defasciculating growth cones that are trailing along the pioneer axon. RGC branching controlled by repellent tectal cues has recently been shown to be the critical event in retinotectal map development. The intracellular mechanism underlying this phenomenon, however, is not understood. Inhibiting RhoA with either C3 toxin or inhibiting p160Rock kinase, an effector of RhoA, with Y27632 inhibited collapse, retraction, and the number of axons that showed lateral extensions. Lateral extension length increased significantly. Inhibiting Rac1A and cdc42 with cell permeable peptide inhibitors did not inhibit collapse of growth cones, but did inhibit axon retraction. In addition, the number of axons that showed lateral extensions and lateral extension length were significantly reduced. A dynamic cytoskeleton is necessary to react to incoming guidance information. This study addresses the problems of how growth cone motility and branching or defasciculation are affected by Rho‐GTPases as extracellular signals are transmitted to the cytoskeleton. © 2002 Wiley Periodicals, Inc. J Neurobiol 54: 358–369, 2003 相似文献
12.
13.
Since the isolation of cyclin-dependent kinase 5 (Cdk5), this proline-directed serine/threonine kinase has been demonstrated as an important regulator of neuronal migration, neuronal survival and synaptic functions. Recently, a number of players implicated in dendrite and synapse development have been identified as Cdk5 substrates. Neurite extension, synapse and spine maturation are all modulated by a myriad of extracellular guidance cues or trophic factors. Cdk5 was recently demonstrated to regulate signaling downstream of some of these extracellular factors, in addition to modulating Rho GTPase activity, which regulates cytoskeletal dynamics. In this communication, we summarize our existing knowledge on the pathways and mechanisms through which Cdk5 affects dendrite, synapse and spine development. 相似文献
14.
15.
16.
Abhilash Sawant Briana N. Ebbinghaus Adam Bleckert Clare Gamlin Wan-Qing Yu David Berson Uwe Rudolph Raunak Sinha Mrinalini Hoon 《Cell reports》2021,34(11):108858
- Download : Download high-res image (164KB)
- Download : Download full-size image
17.
Singla N Himanen JP Muir TW Nikolov DB 《Protein science : a publication of the Protein Society》2008,17(10):1740-1747
Expressed protein ligation (EPL) is a protein engineering approach that allows the modification or assembly of a target protein from multiple recombinant and synthetic polypeptides. EPL has been previously used to modify intracellular proteins and small integral membrane proteins for structural and functional studies. Here we describe the semisynthetic site-specific modification of the complete, multidomain extracellular regions of both A and B classes of Eph receptor tyrosine kinases. We show that the ectodomains of these receptors can be ligated to different peptides under carefully established experimental conditions, while their biological activity is retained. This work extends the boundaries of the EPL technique for semisynthesis of multidomain, extracellular, disulfide-bonded, and glycosylated proteins and highlights its potential application for reconstituting entire single-pass transmembrane proteins. 相似文献
18.
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have a variety of roles in the developing and adult central nervous system that require direct cell–cell interactions; including regulating axon path finding, cell proliferation, migration and synaptic plasticity. Recently, we identified a novel pro-survival role for ephrins in the adult subventricular zone, where ephrinB3 blocks Eph-mediated cell death during adult neurogenesis. Here, we examined whether EphB3 mediates cell death in the adult forebrain following traumatic brain injury and whether ephrinB3 infusion could limit this effect. We show that EphB3 co-labels with microtubule-associated protein 2-positive neurons in the adult cortex and is closely associated with ephrinB3 ligand, which is reduced following controlled cortical impact (CCI) injury. In the complete absence of EphB3 (EphB3−/−), we observed reduced terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL), and functional improvements in motor deficits after CCI injury as compared with wild-type and ephrinB3−/− mice. We also demonstrated that EphB3 exhibits dependence receptor characteristics as it is cleaved by caspases and induces cell death, which is not observed in the presence of ephrinB3. Following trauma, infusion of pre-clustered ephrinB3-Fc molecules (eB3-Fc) into the contralateral ventricle reduced cortical infarct volume and TUNEL staining in the cortex, dentate gyrus and CA3 hippocampus of wild-type and ephrinB3−/− mice, but not EphB3−/− mice. Similarly, application of eB3-Fc improved motor functions after CCI injury. We conclude that EphB3 mediates cell death in the adult cortex through a novel dependence receptor-mediated cell death mechanism in the injured adult cortex and is attenuated following ephrinB3 stimulation. 相似文献
19.
Myosin light-chain kinase (MLCK) regulates actin-myosin II interactions in nonskeletal muscle cells, and the use of specific pharmacological inhibitors has implicated MLCK in retinal growth cone motility and neurite outgrowth. To further establish the existence and functions of MLCK in neurons, we isolated cDNAs encoding two forms of goldfish MLCK that were differentially expressed in the brain and gut and we sequenced the form most abundantly expressed in the brain (GFMLCK1). In situ hybridization with a cRNA probe specific to GFMLCK1 revealed widespread expression in CNS neurons, including tectal periventricular neurons and cerebellar and medullary neurons. After optic nerve crush, expression was markedly increased in the retinal ganglion cells. Expression peaked during the phase of axonal outgrowth, which, when taken together with our previous pharmacological studies, further supports a role for MLCK in growth cone motility. © 1996 John Wiley & Sons, Inc. 相似文献
20.
Juhi Sardana Cristina Organisti Ilona C. Grunwald Kadow 《Developmental neurobiology》2018,78(9):873-888
Deciphering the mechanisms of sensory neural map formation is a central aim in neurosciences. Failure to form a correct map frequently leads to defects in sensory processing and perception. The olfactory map develops in subsequent steps initially forming a rough and later a precise map of glomeruli in the antennal lobe (AL), mainly consisting of olfactory receptor neuron (ORN) axons and projection neuron (PN) dendrites. The mechanisms underpinning the later stage of class‐specific glomerulus formation are not understood. Recent studies have shown that the important guidance molecule Eph and its ligand ephrin play a role in class‐specific PN targeting. Here, we reveal aspects of the mechanism downstream of Eph signaling during olfactory map formation. We show that the Eph‐specific RhoGEF Ephexin (Exn) is required to fine tune PN dendrite patterning within specific glomeruli. We provide the first report showing an in vivo neurite guidance defect in an exn mutant. Interestingly, the quality of the phenotypes is different between eph and exn mutants; while loss of Eph leads to strong misprojections of DM3/Or47a neurons along the medial–lateral axis of the antennal lobe (AL), loss of Exn induces ventral ectopic innervation of a neighboring glomerulus. Genetic interaction experiments suggest that differential signaling of the small GTPases Rac1 and Cdc42 mediated by Exn‐dependent and ‐independent Eph signaling fine tunes spatial targeting of PN dendrites within the olfactory map. We propose that their distinct activities on the actin cytoskeleton are required for precise navigation of PN dendrites within the olfactory map. Taken together, our results suggest that the precise connectivity of an individual neuron can depend on different modes of signaling downstream of a single guidance receptor. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000–000, 2018 相似文献