首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N‐cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin‐17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin‐17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin‐17 specific antisense morpholino oligonucleotides (MOs). Protocadherin‐17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin‐17 mRNA. Injection of a vivo‐protocadherin‐17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin‐17 plays an important role in the normal formation of the zebrafish retina. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

2.
3.
Here, we examined the role of ADAM10 during retinal cell differentiation in retinal sections and in vitro cultures of developing chick retinal cells from embryonic day 6 (ED6). Immunohistochemistry showed that ADAM10 is abundantly expressed in the inner zone of neuroblastic layer at ED5, and it becomes more highly expressed in the ganglion cell layer at ED7 and ED9. Western blotting confirmed that ADAM10 was expressed as an inactive pro‐form that was processed to a shorter, active form in control cultured cells, but in cultures treated with an ADAM10 inhibitor (GI254023X) and ADAM10‐specific siRNA, the level of mature ADAM10 decreased. Phase‐contrast microscopy showed that long neurite extensions were present in untreated cultures 24 h after plating, whereas cultures treated with GI254023X showed significant decreases in neurite extension. Immunofluorescence staining revealed that there were far fewer differentiated ganglion cells in ADAM10 siRNA and GI254023X‐treated cultures compared to controls, whereas the photoreceptor cells were unaltered. The Pax6 protein was more strongly detected in the differentiated ganglion cells of control cultures compared to ADAM10 siRNA and GI254023X‐treated cultures. N‐cadherin ectodomain shedding was apparent in control cultures after 24 h, when ganglion cell differentiation was observed, but ADAM10 siRNA and GI254023X treatment inhibited these processes. In contrast, N‐cadherin staining was strongly detected in photoreceptor cells regardless of ADAM10 siRNA and GI254023X treatment. Taken together, these data indicate that the inhibition of ADAM10 can inhibit Pax6 expression and N‐cadherin ectodomain shedding in retinal cells, possibly affecting neurite outgrowth and ganglion cell differentiation. J. Cell. Biochem. 114: 942–954, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The cadherin family of cell adhesion molecules mediates adhesive interactions that are required for the formation and maintenance of tissues. Previously, we demonstrated that N‐cadherin, which is required for numerous morphogenetic processes, is expressed in the pancreatic epithelium at E9.5, but later becomes restricted to endocrine aggregates in mice. To study the role of N‐cadherin during pancreas formation and function we generated a tissue‐specific knockout of N‐cadherin in the early pancreatic epithelium by inter‐crossing N‐cadherin‐floxed mice with Pdx1Cre mice. Analysis of pancreas‐specific ablation of N‐cadherin demonstrates that N‐cadherin is dispensable for pancreatic development, but required for β‐cell granule turnover. The number of insulin secretory granules is significantly reduced in N‐cadherin‐deficient β‐cells, and as a consequence insulin secretion is decreased. genesis 48:374–381, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
The notochord has important structural and signaling properties during vertebrate development with key roles in patterning surrounding tissues, including the foregut. The adriamycin mouse model is an established model of foregut anomalies where exposure of embryos in utero to the drug adriamycin leads to malformations including oesophageal atresia and tracheoesophageal fistula. In addition to foregut abnormalities, treatment also causes branching, displacement, and hypertrophy of the notochord. Here, we explore the hypothesis that the notochord may be a primary target of disruption leading to abnormal patterning of the foregut by examining notochord position and structure in early embryos following adriamycin exposure. Treated (n = 46) and control (n = 30) embryos were examined during the crucial period when the notochord normally delaminates away from the foregut endoderm (6–28 somite pairs). Transverse sections were derived from the anterior foregut and analyzed by confocal microscopy following immunodetection of extracellular matrix markers E‐cadherin and Laminin. In adriamycin‐treated embryos across all stages, the notochord was abnormally displaced ventrally with prolonged attachment to the foregut endoderm. While E‐cadherin was normally detected in the foregut endoderm with no expression in the notochord of control embryos, treated embryos up to 24 somites showed ectopic notochordal expression indicating a change in characteristics of the tissue; specifically an increase in intracellular adhesiveness, which may be instrumental in structural changes, affecting mechanical and signaling properties. This is consistent with disruption of the notochord leading to altered signaling to the foregut causing abnormal patterning and congenital foregut malformations.  相似文献   

7.
Epithelial cadherin (E‐cadherin) is a 120 kDa cell–cell adhesion molecule involved in the establishment of epithelial adherens junctions. It is connected to the actin cytoskeleton by adaptor proteins such as β‐catenin. Loss of E‐cadherin expression/function has been related to tumor progression and metastasis. Several molecules associated with down‐regulation of E‐cadherin have been described, within them neural cadherin, Twist and dysadherin. Human breast cancer cell lines IBH‐6 and IBH‐4 were developed from ductal primary tumors and show characteristic features of malignant epithelial cells. In this study expression of E‐cadherin and related proteins in IBH‐6 and IBH‐4 cell lines was evaluated. In IBH‐6 and IBH‐4 cell extracts, only an 89 kDa E‐cadherin form (Ecad89) was detected, which is truncated at the C‐terminus and is present at low levels. Moreover, no accumulation of the 86 kDa E‐cadherin ectodomain and of the 38 kDa CTF1 fragment was observed. IBH‐6 and IBH‐4 cells showed an intracellular scattered E‐cadherin localization. β‐catenin accompanied E‐cadherin localization, and actin stress fibers were identified in both cell types. E‐cadherin mRNA levels were remarkably low in IBH‐6 and IBH‐4 cells. The E‐cadherin mRNA and genomic sequence encoding exons 14–16 could not be amplified in either cell line. Neither the mRNA nor the protein of neural cadherin and dysadherin were detected. Up‐regulation of Twist mRNA was found in both cell lines. In conclusion, IBH‐6 and IBH‐4 breast cancer cells show down‐regulation of E‐cadherin expression with aberrant protein localization, and up‐regulation of Twist; these features can be related to their invasive/metastatic characteristics. J. Cell. Physiol. 222: 596–605, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
11.
12.
POU‐V class proteins like Oct4 are crucial for keeping cells in an undifferentiated state. An Oct4 homologue in Xenopus laevis, Oct25, peaks in expression during early gastrulation, when many cells are still uncommitted. Nevertheless, extensive morphogenesis is taking place in all germ layers at that time. Phenotypical analysis of embryos with Oct25 overexpression revealed morphogenesis defects, beginning during early gastrulation and resulting in spina‐bifida‐like axial defects. Analysis of marker genes and different morphogenesis assays show inhibitory effects on convergence and extension and on mesoderm internalization. On a cellular level, cell–cell adhesion is reduced. On a molecular level, Oct25 overexpression activates expression of PAPC, a functional inhibitor of the cell adhesion molecule EP/C‐cadherin. Intriguingly, Oct25 effects on cell–cell adhesion can be restored by overexpression of EP/C‐cadherin or by inhibition of the PAPC function. Thus, Oct25 affects morphogenesis via activation of PAPC expression and subsequent functional inhibition of EP/C‐cadherin.  相似文献   

13.
In Xenopus embryos, XMeis3 protein activity is required for normal hindbrain formation. Our results show that XMeis3 protein knock down also causes a loss of primary neuron and neural crest cell lineages, without altering expression of Zic, Sox or Pax3 genes. Knock down or inhibition of the Pax3, Zic1 or Zic5 protein activities extinguishes embryonic expression of the XMeis3 gene, as well as triggering the loss of hindbrain, neural crest and primary neuron cell fates. Ectopic XMeis3 expression can rescue the Zic knock down phenotype. HoxD1 is an XMeis3 direct-target gene, and ectopic HoxD1 expression rescues cell fate losses in either XMeis3 or Zic protein knock down embryos. FGF3 and FGF8 are direct target genes of XMeis3 protein and their expression is lost in XMeis3 morphant embryos. In the genetic cascade controlling embryonic neural cell specification, XMeis3 lies below general-neuralizing, but upstream of FGF and regional-specific genes. Thus, XMeis3 protein is positioned at a key regulatory point, simultaneously regulating multiple neural cell fates during early vertebrate nervous system development.  相似文献   

14.
The classical cell sorting experiments undertaken by Townes and Holtfreter described the intrinsic propensity of dissociated embryonic cells to self‐organize and reconcile into their original embryonic germ layers with characteristic histotypic positioning. Steinberg presented the differential adhesion hypothesis to explain these patterning phenomena. Here, we have reappraised these issues by implementing embryoid bodies to model the patterning of epiblast and primitive endoderm layers. We have used combinations of embryonic stem (ES) cells and their derivatives differentiated by retinoic acid treatment to model epiblast and endoderm cells, and wild‐type or E‐cadherin null cells to represent strongly or weakly adherent cells, respectively. One cell type was fluorescently labeled and reconstituted with another heterotypically to generate chimeric embryoid bodies, and cell sorting was tracked by time‐lapse video microscopy and confirmed by immunostaining. When undifferentiated wild‐type and E‐cadherin null ES cells were mixed, the resulting cell aggregates consisted of a core of wild‐type cells surrounded by loosely associated E‐cadherin null cells, consistent with the differential adhesion hypothesis. However, when mixed with undifferentiated ES cells, the differentiated primitive endoderm‐like cells sorted to the surface to form a primitive endoderm layer irrespective of cell‐adhesive strength, contradicting the differential adhesion hypothesis. We propose that the primitive endoderm cells reach the surface by random movement, and subsequently the cells generate an apical/basal polarity that prevents reentry. Thus, the ability to generate epithelial polarity, rather than adhesive affinity, determines the surface positioning of the primitive endoderm cells. genesis 47:579–589, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
Genetic regulation of arealization of the neocortex   总被引:4,自引:0,他引:4  
  相似文献   

17.
Melanocytic behavior, survival, and proliferation are regulated through a complex system of cell–cell adhesion molecules. Pathologic changes leading to development of malignant melanoma, upset the delicate homeostatic balance between melanocytes and keratinocytes and can lead to altered expression of cell–cell adhesion and cell–cell communication molecules. Malignant transformation of melanocytes frequently coincides with loss of E‐cadherin expression. We now show loss of another member of the superfamily of classical cadherins, H‐cadherin (CDH13), which may be involved in the development of malignant melanoma. The provided data show that H‐cadherin expression is lost in nearly 80% of the analyzed melanoma cell lines. Knockdown of H‐cadherin using siRNA increases invasive capacity in melanocytes. Functional assays show that the re‐expression of H‐cadherin decreases migration and invasion capacity, as well as anchorage‐independent growth in comparison to control melanoma cells. Furthermore, melanoma cells, which re‐express H‐cadherin via stable transfection show a reduction in rate of tumor growth in a nu/nu mouse tumor model in comparison to the parental control transfected cell lines. Our study presents for the first time the down‐regulation of H‐cadherin in malignant melanomas and its possible functional relevance in maintenance healthy skin architecture.  相似文献   

18.
Dorsal–ventral patterning of the vertebrate retina is essential for accurate topographic mapping of retinal ganglion cell (RGC) axons to visual processing centers. Bone morphogenetic protein (Bmp) growth factors regulate dorsal retinal identity in vertebrate models, but the developmental timing of this signaling and the relative roles of individual Bmps remain unclear. In this study, we investigate the functions of two zebrafish Bmps, Gdf6a and Bmp4, during initiation of dorsal retinal identity, and subsequently during lens differentiation. Knockdown of zebrafish Gdf6a blocks initiation of retinal Smad phosphorylation and dorsal marker expression, while knockdown of Bmp4 produces no discernable retinal phenotype. These data, combined with analyses of embryos ectopically expressing Bmps, demonstrate that Gdf6a is necessary and sufficient for initiation of dorsal retinal identity. We note a profound expansion of ventral retinal identity in gdf6a morphants, demonstrating that dorsal BMP signaling antagonizes ventral marker expression. Finally, we demonstrate a role for Gdf6a in non-neural ocular tissues. Knockdown of Gdf6a leads to defects in lens-specific gene expression, and when combined with Bmp signaling inhibitors, disrupts lens fiber cell differentiation. Taken together, these data indicate that Gdf6a initiates dorsal retinal patterning independent of Bmp4, and regulates lens differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号