首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A male zebra finch begins to learn to sing by memorizing a tutor's song during a sensitive period in juvenile development. Tutor song memorization requires molecular signaling within the auditory forebrain. Using microarray and in situ hybridizations, we tested whether the auditory forebrain at an age just before tutoring expresses a different set of genes compared with later life after song learning has ceased. Microarray analysis revealed differences in expression of thousands of genes in the male auditory forebrain at posthatch day 20 (P20) compared with adulthood. Furthermore, song playbacks had essentially no impact on gene expression in P20 auditory forebrain, but altered expression of hundreds of genes in adults. Most genes that were song‐responsive in adults were expressed at constitutively high levels at P20. Using in situ hybridization with a representative sample of 44 probes, we confirmed these effects and found that birds at P20 and P45 were similar in their gene expression patterns. Additionally, eight of the probes showed male–female differences in expression. We conclude that the developing auditory forebrain is in a very different molecular state from the adult, despite its relatively mature gross morphology and electrophysiological responsiveness to song stimuli. Developmental gene expression changes may contribute to fine‐tuning of cellular and molecular properties necessary for song learning. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

2.
Early life stressors can impair song in songbirds by negatively impacting brain development and subsequent learning. Even in species in which only males sing, early life stressors might also impact female behavior and its underlying neural mechanisms, but fewer studies have examined this possibility. We manipulated brood size in zebra finches to simultaneously examine the effects of developmental stress on male song learning and female behavioral and neural response to song. Although adult male HVC volume was unaffected, we found that males from larger broods imitated tutor song less accurately. In females, early condition did not affect the direction of song preference: all females preferred tutor song over unfamiliar song in an operant test. However, treatment did affect the magnitude of behavioral response to song: females from larger broods responded less during song preference trials. This difference in activity level did not reflect boldness per se, as a separate measure of this trait did not differ with brood size. Additionally, in females we found a treatment effect on expression of the immediate early gene ZENK in response to tutor song in brain regions involved in song perception (dNCM) and social motivation (LSc.vl, BSTm, TnA), but not in a region implicated in song memory (CMM). These results are consistent with the hypothesis that developmental stressors that impair song learning in male zebra finches also influence perceptual and/or motivational processes in females. However, our results suggest that the learning of tutor song by females is robust to disturbance by developmental stress. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018  相似文献   

3.
In sexually dimorphic zebra finches (Taeniopygia guttata), only males learn to sing their father's song, whereas females learn to recognize the songs of their father or mate but cannot sing themselves. Memory of learned songs is behaviorally expressed in females by preferring familiar songs over unfamiliar ones. Auditory association regions such as the caudomedial mesopallium (CMM; or caudal mesopallium) have been shown to be key nodes in a network that supports preferences for learned songs in adult females. However, much less is known about how song preferences develop during the sensitive period of learning in juvenile female zebra finches. In this study, we used blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to trace the development of a memory-based preference for the father's song in female zebra finches. Using BOLD fMRI, we found that only in adult female zebra finches with a preference for learned song over novel conspecific song, neural selectivity for the father's song was localized in the thalamus (dorsolateral nucleus of the medial thalamus; part of the anterior forebrain pathway, AFP) and in CMM. These brain regions also showed a selective response in juvenile female zebra finches, although activation was less prominent. These data reveal that neural responses in CMM, and perhaps also in the AFP, are shaped during development to support behavioral preferences for learned songs.  相似文献   

4.
Song learning takes place in two separate or partially overlapping periods, a sensory phase in which a tutor song is memorized and a sensorimotor phase in which a copy of the model is produced. The stage of song development where song becomes stable and stereotyped is called crystallization. Adult birds usually do not learn new song in many species including the zebra finch. However, it is not known whether song crystallization as such or aging impedes adult learning. Exposure to loud noises prevents birds from developing and crystallizing their song, because they cannot control their voice by auditory feedback. Zebra finches even without previous experience of hearing or singing a song failed to learn a song model provided in adulthood. Thus, neither the absence of a tutor song nor the lack of song crystallization enables new song learning in adulthood, but age per se limits the ability or motivation to learn song. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

5.
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post‐hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1315–1338, 2015  相似文献   

6.
The catecholamines norepinephrine (NE) and dopamine (DA) have been implicated in the sexual differentiation of brain and behavior and in species-specific learning in several species. To determine if these neurotransmitters might be involved in sexual differentiation of the vocal control system and song learning in male zebra finches, NE and DA levels and turnover rates were quantified in 10 behaviorally relevant brain nuclei [6 vocal control (VCN), 2 auditory (AN), and 2 hypothalamic (HN)] at four critical points during sexual differentiation of the VCN and the period of song learning, 25, 35, 55, and 90 days of age. Some birds were pretreated with α-methyl-para-tyrosine (αMPT) to allow estimation of NE and DA turnover rates. NE and DA levels in microdissected nuclei were quantified using high-performance liquid chromatography with electrochemical detection. αMPT treatment suppressed catecholamine synthesis just as effectively in juveniles as it does in adults and proved an effective method for estimating NE and DA turnover rates. Patterns of NE and DA function in most VCN and AN over development were quite different from those in HN in which NE and DA function changed gradually and showed no striking peaks. NE turnover rates changed significantly over development in all six VCN [nucleus interfacialis (Nlf), high vocal center (HVC), nucleus robustus of the archistriatum (RA), dorsomedial portion of the intercollicular nucleus (DM), Area X of the parolfactory lobe, and lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN)]; one AN [nucleus mesencephalicus lateralis pars dorsalis (MLd)], and one HN [preopticus anterior (POA)]. NE levels changed significantly in two VCN (Nlf and Area X). In Nlf, RA, Area X, IMAN, and MLd, NE levels and/or turnover rates showed a striking peak at day 25, which was not seen in HN. Both DA levels and turnover rates changed profoundly over development in 5 of 6 VCN (Nlf, RA, DM, Area X, and IMAN) and both AN (MLd and Field L). These nuclei showed striking peaks in DA levels and turnover rates, primarily on day 35 and/or 55, which then declined profoundly by day 90. This contrasted with the minimal change in DA turnover rates seen in one HN (POA) and the sixth VCN, HVC. In several VCN and AN, NE and DA levels and turnover rates during development reached levels never seen in adult males. Previous research has shown that catecholamine function is heightened in VCN during development compared to surrounding tissues. Our data demonstrate that NE and DA function during development shows pronounced peaks in most VCN not seen in HN. This is interesting because both VCN and HN are hormone sensitive, and both show hormone-modulated NE and DA function in adult males. The timing of these peaks suggests that increased catecholaminergic function may be involved in sexual differentiation of the VCN and song learning in finches. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 329–346, 1998  相似文献   

7.
Two way choice tests show a preference of female zebra finches for male songs four standard deviations longer than normal song. Further tests show the ontogeny of this preference to parallel song learning in general as well as a preference for songs with entirely heterogeneous notes compared to songs with four note repeats. These findings are discussed in relation to a theory of the evolution of bird song from bird calls due to female preferences for longer, more complex vocalizations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Male zebra finches normally learn their song from adult models during a restricted period of juvenile development. If song models are not available then, juveniles develop an isolate song which can be modified in adulthood. In this report we investigate the features of juvenile experience that underly the timing of song learning. Juvenile males raised in soundproof chambers or in visual isolation from conspecifics developed stable isolate song. However, whereas visual isolate song notes were similar to those of colony-reared males, soundproof chamber isolates included many phonologically abnormal notes in their songs. Despite having stable isolate songs, both groups copied new notes from tutors presented to them in adulthood (2.7 notes per bird for soundproof chamber isolates, 4.4 notes per bird for visual isolates). Old notes were often modified or eliminated. We infer that social interactions with live tutors are normally important for closing the sensitive period for song learning. Lesions of a forebrain nucleus (IMAN) had previously been shown to disrupt juvenile song learning, but not maintenance of adult song for up to 5 weeks after surgery. In this study, colony-reared adult males given bilateral lesions of IMAN retained all their song notes for up to 4–7.5 months after lesioning. However, similar lesions blocked all song note acquisition in adulthood by both visual and soundproof chamber isolates. Other work has shown that intact hearing is necessary for the maintenance of adult zebra finch song. We infer that auditory pathways used for song maintenance and acquisition differ: IMAN is necessary for auditorily guided song acquisition—whether by juveniles or adults—but not for adult auditorily guided song maintenance. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
10.
11.
12.
Divergence of male sexual signals and female preferences for those signals often maintains reproductive boundaries between closely related, co‐occurring species. However, contrasting sources of selection, such as interspecific competition, can lead to weak divergence or even convergence of sexual signals in sympatry. When signals converge, assortative mating can be maintained if the mating preferences of females diverge in sympatry (reproductive character displacement; RCD), but there are few explicit examples. Pied flycatchers (Ficedula hypoleuca) are sympatric with collared flycatchers (F. albicollis) on the Baltic island of Öland, where males from both species compete over nestboxes, their songs converge, and the two species occasionally hybridize. We compare song discrimination of male and female pied flycatchers on Öland and in an allopatric population on the Swedish mainland. Using field choice trials, we show that male pied flycatchers respond similarly to the songs of both species in sympatry and allopatry, while female pied flycatchers express stronger discrimination against heterospecific songs in sympatry than in allopatry. These results are consistent with RCD of song discrimination of female pied flycatchers where they co‐occur with collared flycatchers, which should maintain species assortative mating despite convergence of male sexual signals.  相似文献   

13.
A system of brain nuclei controls song learning and behavior in zebra finches (Poephila guttata). The size of song-control nuclei are much larger in males, which sing, than in females, which do not sing. This study examined the distribution of fibers, terminals, and cell bodies that are immunoreactive for tyrosine hydroxylase (TH) (the rate-limiting enzyme in the synthesis of catecholamines) in song-control nuclei of adult males and females and juvenile males. In addition, the broad pattern of TH staining throughout the brain was described. There was a sex difference in TH immunoreactivity within song-control nuclei: males had light to moderate staining in all three cortical nuclei examined, whereas females had little or no label in corresponding areas [lateral magnocellular nucleus of the anterior neostriatum (IMAN), higher vocal center (HVC), and robust nucleus of the archistriatum (RA)]. The song-control nucleus area X (X), located in the striatum of avian basal ganglia, was more darkly stained than the surrounding striatum only in males; X was not defined by more intense immunoreactivity in females and hence could not be visualized. There were no apparent differences in TH staining in males ranging in age from 50 days to adulthood (>90 days). Outside of the song-control system there were no substantive differences as a function of sex or age in the pattern or intensity of TH labeling. Major areas of telencephalic staining included the striatal region of basal ganglia, which was covered with dense, fine-grained label, and the septum, where cell bodies were encircled by extremely well-labeled thick processes. In the diencephalon, the preoptic area and hypothalamus included a complex pattern of darkly stained somata and fiber and terminal labeling. Darkly stained somata surrounded the pretectal nucleus, and labeled processes ramified throughout the superficial layers of the optic tectum. The midbrain and hindbrain contained a dense plexus of extremely dark cell bodies corresponding to mammalian substantia nigra, adjacent tegmental areas, and locus ceruleus. Labeled hindbrain cells were also seen in the pontine region, around nucleus solitarius, and in the ventrolateral medulla. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Accurate song perception is likely to be as important for female songbirds as it is for male songbirds. Male zebra finches (Taeniopygia guttata) show differential ZENK expression to conspecific and heterospecific songs by day 30 posthatch in auditory perceptual brain regions such as the caudomedial nidopallium (NCM) and the caudomedial mesopallium (CMM). The current study examined ZENK expression in response to songs of different qualities at day 45 posthatch in both sexes. Normally reared juvenile zebra finches showed higher densities of immunopositive nuclei in both the dorsal and ventral areas of NCM and CMM (formerly cmHV), but not HA, a visual area, in response to normal song over untutored song or silence. Male and female patterns of ZENK expression did not differ. We next compared responses of birds reared without exposure to normal song (untutored) to those of normally reared birds. Untutored birds did not show higher responses to normal song than to untutored song in the three song perception areas. Furthermore, untutored birds of both sexes showed lower densities of immunopositive nuclei in all four areas than did normally reared birds. In addition, ZENK expression was greater in untutored females than in males in the dorsal portion of NCM and in CMM. Our findings suggest that at least some neural mechanisms of song perception are in place in socially reared female and male finches at an early age. Furthermore, early exposure to song tutors affects responses to song stimuli.  相似文献   

15.
16.
Learned vocalizations are important for communication in some vertebrate taxa. The neural circuitry for the learning and production of vocalizations is well known in songbirds, many of which learn songs initially during a critical period early in life. Dopamine is essential for motor learning, including song learning, and dopamine‐related measures change throughout development in song‐control regions such as HVC, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and the robust nucleus of the arcopallium (RA). In mammals, the neuropeptide neurotensin strongly interacts with dopamine signaling. This study investigated a potential role for the neurotensin system in song learning by examining how neurotensin (Nts) and neurotensin receptor 1 (Ntsr1) expression change throughout development. Nts and Ntsr1 mRNA expression was analyzed in song‐control regions of male zebra finches in four stages of the song learning process: pre‐subsong (25 days posthatch; dph), subsong (45 dph), plastic song (60 dph), and crystallized song (130 dph). Nts expression in LMAN during the subsong stage was lower compared to other time points. Ntsr1 expression was highest in HVC, Area X, and RA during the pre‐subsong stage. Opposite and complementary expression patterns for the two genes in song nuclei and across the whole brain suggest distinct roles for regions that produce and receive Nts. The expression changes at crucial time points for song development are similar to changes observed in dopamine studies and suggest Nts may be involved in the process of vocal learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 671–686, 2018  相似文献   

17.
18.
Songbirds have a specialized steroid‐sensitive network of brain nuclei, the song system, for controlling song. Most nuclei of the song system express androgen receptors, and the sensory‐motor integration nucleus High Vocal Center (HVC) alone also expresses estrogen receptors. Apart from expressing estrogen receptors in the vocal control system, songbirds are unique among birds because they have high concentrations of the estrogen‐synthesizing enzyme aromatase in the neostriatum surrounding HVC. However, the role of estrogen in controlling the development of the song structure has been scarcely investigated. In this work, we show that blocking the production of estrogen during testosterone‐induced song motor development in adult female canaries alters the song pattern compared to control females treated with testosterone only. These effects were correlated with inhibition of the expression of estrogen‐sensitive genes, such as brain‐derived nerve growth factor, in HVC. The expression of the ATP‐synthase gene, an indicator of cell activity, in HVC, and the size of HVC, were not affected by the treatment. Our results provide the first example of estrogen‐sensitive mechanisms controlling the structural features of adult birdsong. © 2002 Wiley Periodicals, Inc. J Neurobiol 54: 370–379, 2003  相似文献   

19.
左明雪  陈刚  彭卫民  曾少举 《生命科学》2000,12(2):60-62,56
鸣禽发声学习的控制系统主要由一条直接神经通路和一条辅助神经通路组成,由前脑控制发声学习的最高中枢HVC、旁嗅叶的X区和巨细胞核外侧部(lMAN)组成的辅助通路,对鸟类发声学习行为的发育和调制具有重要作用。发声控制系统中神经元类型、数量及再生与更替、神经组构及其重组、神经介质和受体的分布等差异,决定了鸣禽在发声学习行为表现的差异以及性双态性。本文对近年鸟类控制发声学习行煌神经生物学机制的进展作了较为  相似文献   

20.
Previous studies have shown that zebra finch females copy the mate choice of other females by choosing a mate of the same phenotype as the one chosen by another female (model). Little is known about the influence of the model female on the mate choice of the observing female. Therefore, we investigated the role of the model female in mate‐choice copying by manipulating her phenotype. Test females could choose between an unadorned male and an artificially adorned male, that is, wearing a red feather on the forehead. During a 2h observation period, test females could observe a single male in one cage and a male–female pair in another cage. In treatment one, the single male was unadorned and both the male and the female of the pair (model female) were adorned. In treatment two, the single male was adorned, the male of the pair unadorned and the model female adorned. Afterwards, test females could again choose between two new males, one adorned and one unadorned. In treatment one, test females first showed no preference for one of the two males, but avoided adorned males after the observation period. In treatment two, test females lost an initial preference for unadorned males after the observation period. In both treatments, test females did not copy the mate choice of the adorned model female. Adorned model females seemed to have a negative influence on the attractiveness of their mates' phenotype. Test females might have recognised model females as females of a different phenotype within their species which are adapted to different environmental conditions, or even have recognised model females as a female of another species. Our study demonstrates the important role of the model female in the complex public information network in zebra finches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号