首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungi such as Aspergillus niger and Mucor rouxii are capable of removing heavy metals from aqueous solutions. The role various functional groups play in the cell wall of M. rouxii in metal biosorption of lead, cadmium, nickel and zinc was investigated in this paper. The biomass was chemically treated to modify the functional carboxyl, amino and phosphate groups. These modifications were examined by means of infrared spectroscopy. It was found that an esterification of the carboxyl groups and phosphate and a methylation of the amine groups significantly decreased the biosorption of the heavy metals studied. Thus, the carboxylate, amine and phosphate groups were recognized as important in the biosorption of metal ions by M. rouxii biomass. The role the lipids fraction play was not significant. The study showed that Na, K, Ca and Mg ions were released from the biomass after biosorption of Pb, Cd, Ni and Zn, indicating that ion exchange was a key mechanism in the biosorption of metal ions by M. rouxii biomass.  相似文献   

2.
In the present paper, the possibility of the application of marine macroalga Ulva (Enteromorpha) prolifera, as microelemental feed supplement for livestock, was evaluated. The concept was based on two facts: the natural macroalga contains high concentrations of microelements and there is a possibility to greatly increase this content via biosorption. In order to characterize the biosorption process of metal ions by U. prolifera, preliminary experiments were conducted with Cr(III) ions. The effect of temperature, pH and the biomass concentration on the equilibrium of biosorption was investigated. For further experiments (biosorption of Mn(II), Zn(II), Cu(II), Co(II)), the following experimental conditions were chosen: pH 5, 25°C, the biomass concentration 1.0 g l−1. Equilibrium of the biosorption process could be described by the Langmuir equation. The theoretical maximum biosorption capacity was also determined by potentiometric titration of the biomass. The investigation of the external structure of the macroalga and atomic concentration of elements on the surface of the biomass was analyzed using scanning electron microscopy. The content of microelements in the biomass after biosorption increased 110,555; 44,228; 21,177; 2,281 and 1,458 times for Co(II), Cr(III),Cu(II), Zn(II), Mn(II), respectively. Therefore, biomass of U. prolifera enriched with individual microelements, mixed in the proper proportion could be used as feed supplement in animal feeding to cover the nutrient requirements for microelements.  相似文献   

3.
The biosorption of Cu(II), Cd(II), and Pb(II) by a dried green macroalga Caulerpa lentillifera was investigated. The sorption kinetic data could be fitted to the pseudo second order kinetic model. The governing transport mechanisms in the sorption process were both external mass transfer and intra-particle diffusion. Isotherm data followed the Sips isotherm model with the exponent of approximately unity suggesting that these biosorption could be described reasonably well with the Langmuir isotherm. The maximum sorption capacities of the various metal components on C. lentillifera biomass could be prioritized in order from high to low as: Pb(II)>Cu(II)>Cd(II). The sorption energies obtained from the Dubinin-Radushkevich model for all sorption systems were in the range of 4-6 kJ mol(-1) indicating that a physical electrostatic force was potentially involved in the sorption process. Thomas model could well describe the breakthrough data from column experiments. Ca(II), Mg(II), and Mn(II) were the major ions released from the algal biomass during the sorption which revealed that ion exchange was one of the main sorption mechanisms.  相似文献   

4.
Arthrospira (Spirulina) platensis was tested for biosorption properties. Preliminary experiments concerning biosorption kinetics were performed on Cr(III) ions. Equilibrium of biosorption was tested for Cr(III), Mn(II) and Mg(II) ions, since these elements are crucial for animals with metabolic disorders. In our study, Spirulina was proposed as a feed additive for animals suffering from diseases characterized by insulin dysregulation, abnormal adipose distribution and a high risk for laminitis. Maximum biosorption capacity of A. platensis, determined from Langmuir equation, was 45.2 for Cr(III), 44.3 for Mn(II) and 42.0 mg/g for Mg(II) ions. Biosorption of Mg(II) ions by microalga has never been studied so far. Finally, the raw and enriched microalgal biomass was examined by ICP-OES to determine its multielamental analysis before and after biosorption, FTIR to indicate functional groups that participated in biosorption and SEM-EDX to illustrate the binding of metal ions on the surface of algal biomass. ICP-OES showed that the content of elements significantly increased in the enriched A. platensis. FTIR spectroscopy evidenced that biosorption of metal ions was mainly due to carboxylate groups present on the microalgal cell wall. SEM analysis clearly showed that biosorption occurred. Arthrospira platensis turned out to be a good biosorbent of metal ions.  相似文献   

5.
Summary The ability of Pseudomonas aeruginosa to accumulate Cd(II) ions from wastewater industries was experimentally investigated and mathematically modelled. From the potentiometric titration and non-ideal competitive analysis (NICA) model, it was found that the biomass contains three acidic sites. The values of proton binding (pK i =1.66±3.26×10−3, 1.92±1.63×10−4 and 2.16±3.79×10−4) and binding constant of cadmium metal ions (pK M1=1.99±2.45×10−3 and pK M2=1.67±4.08×10−3) on the whole surface of biomass showed that protonated functional groups and biosorption of Cd(II) ions could be attributed to a monodentate binding to one acidic site, mainly the carboxylic group. From the isothermal sorption experimental data and Langmuir model, it was also found that the value of Langmuir equilibrium (pK f) constant is 2.04±2.1×10−5 suggesting that the carboxyl group is the main active binding site. In addition, results showed that the maximum cadmium capacity (q max) and affinity of biomass towards cadmium metal ions (b) at pH 5.1 and 20 min were 96.5±0.06 mg/g and 3.40×10−3± 2.10×10−3, respectively. Finally, interfering metal ions such as Pb(II), Cu(II), Cr(III), Zn(II), Fe(II), Mn(II), Ca(II) and Mg(II) inhibited Cd(II) uptake. Comparing the biosorption of Cd(II) by various Pseudomonas isolates from contaminated environment samples (soil and sewage treatment plant) showed that maximum capacities and equilibrium times were different, indicating that there was a discrepancy in the chemical composition between biomasses of different strains.  相似文献   

6.
In this study, Ni (II) biosorption capacity of immobilized cells of Bacillus sp. was investigated. Biosorption of Ni (II) was carried out in batch experiments and the important environmental conditions were optimized. The uptake of metal was rapid, and equilibrium was attained within 270 min. Bacillus strains (ten cultures) were isolated from nickel electroplating effluent by heat shock method. These isolates were grown up in nutrient broth supplemented with Ni (II)(50 mg/L). The culture, exhibiting maximum biosorption capacity (qmax: 118 mg/g), was selected and labeled Bacillus Bio‐4. In order to develop an economical biosorption process cell mass of Bacillus, Bio‐4 was immobilized in Na‐alginate. It was concluded from the results that biosorption of nickel is highly dependent on the type of sorbent and experimental conditions employed. Our results demonstrate that 6.0 mg immobilized cells (18 mg cell biomass in 3.0 mL of 1% Na alginate) had a maximum biosorption capacity of 113 mg Ni(II) per liter of suspension at pH 8.0, 100 rpm and 25°C. The Ni (II) removal was estimated to be 97.4%.  相似文献   

7.
Experiments were conducted studying the removal of Cd2+ from water via biosorption using Rhodotorula sp. Y11. The effects of temperature and initial pH of the solution on biosorption were studied. Caustic and heat treatments showed different influences on the biosorption capacity, and the highest metal uptake value (19.38 mg g−1) was obtained by boiling treated yeast cells. The presence of competing cations, such as Ag+, Cu2+, and Mg2+, except Na+ ions, significantly interfered with the metal uptake. Results indicate that the Langmuir model gave a better fit to the experimental data than the Freundlich equation. The q 10 value was 11.38 mg g−1 for Cd2+ uptake by Y11. Chemical modifications of the biomass demonstrated that carboxyl and amide groups play an important role in Cd2+ biosorption.  相似文献   

8.
A unicellular green microalga, Chlorella sorokiniana, was immobilized on loofa (Luffa cylindrica) sponge and successfully used as a new biosorption system for the removal of lead(II) ions from aqueous solutions. The biosorption of lead(II) ions on both free and immobilized biomass of C. sorokiniana was investigated using aqueous solutions in the concentration range of 10–300 mg/L. The biosorption of lead(II) ions by C. sorokiniana biomass increased as the initial concentration of lead(II) ions increased in the medium. The maximum biosorption capacity for free and immobilized biomass of C. sorokiniana was found to be 108.04 and 123.67 mg lead(II)/g biomass, respectively. The biosorption kinetics were found to be fast, with 96 % of adsorption within the first 5 min and equilibrium reached at 15 min. The adsorption of lead(II) both by free and immobilized C. sorokiniana biomass followed the Langmuir isotherm. The biosorption capacities were detected to be dependent on the pH of the solution; and the maximum adsorption was obtained at a solution pH of about 5. The effect of light metal ions on lead(II) uptake was also studied and it was shown that the presence of light metal ions did not significantly affect lead(II) uptake. The loofa sponge‐immobilized C. sorokiniana biomass could be regenerated using 0.1 M HCl, with up to 99 % recovery. The desorbed biomass was used in five biosorption‐desorption cycles, and no noticeable loss in the biosorption capacity was observed. In addition, fixed bed breakthrough curves for lead(II) removal were presented. These studies demonstrated that loofa sponge‐immobilized biomass of C. sorokiniana could be used as an efficient biosorbent for the treatment of lead(II) containing wastewater.  相似文献   

9.
Mechanisms of biosorption of different heavy metals by brown marine macroalgae   总被引:11,自引:0,他引:11  
The biosorption mechanisms of different heavy metallic cations (Cd, Ni, Pb) to active chemical groups on the cell wall matrix of the nonliving brown marine macroalga, Sargassum vulgaris in its natural form, were examined by the following instrumental and chemical techniques: Fourier-transform infrared (FTIR) analysis, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and extraction of alginic acid and sulfated polysaccharides, which act as metal-binding moieties present in cell wall. From the different techniques used and the known chemical composition of the algal cell wall, it was observed that biosorption of the metallic cations to the algal cell wall component was a surface process. The binding capacities of the different metal cations were between 1 and 1.2 mmol metal/g on a dry weight basis. The main chemical groups involved in the metallic cation biosorption were apparently carboxyl, amino, sulfhydryl, and sulfonate. These groups were part of the algal cell wall structural polymers, namely, polysaccharides (alginic acid, sulfated polysaccharides), proteins, and peptidoglycans. The main cadmium cation sequestration mechanism by the algal biomass was apparently chelation, while the nickel cation sequestration mechanism was mainly ion exchange. Lead cations exhibit higher affinity to the algal biomass, and their binding mechanism included a combination of ion exchange, chelation, and reduction reactions, accompanied by metallic lead precipitation on the cell wall matrix. During the ion exchange process, calcium, magnesium, hydrogen cations, and probably other cations (sodium and potassium) in the algal cell wall matrix were replaced by the tested heavy metals.  相似文献   

10.
Three different kinds of Phanerochaete chrysosporium (NaOH‐treated, heat‐inactivated and active) biosorbent were used for the removal of Cd(II) and Hg(II) ions from aquatic systems. The biosorption of Cd(II) and Hg(II) ions on three different forms of Phanerochaete chrysosporium was studied in aqueous solutions in the concentration range of 50–700 mg/L. Maximum biosorption capacities of NaOH‐treated, heat‐inactivated and active Phanerochaete chrysosporium biomass were found to be 148.37 mg/g, 78.68 mg/g and 68.56 mg/g for Cd(II) as well as 224.67 mg/g, 122.37 mg/g and 88.26 mg/g for Hg(II), respectively. For Cd(II) and Hg(II) ions, the order of affinity of the biosorbents was arranged as NaOH‐treated > heat‐inactivated > active. The order of the amount of metal ions adsorbed was established as Hg(II) > Cd(II) on a weight basis, and as Cd(II) > Hg(II) on a molar basis. Biosorption equilibriums were established in about 60 min. The effect of the pH was also investigated, and maximum rates of biosorption of metal ions on the three different forms of Phanerochaete chrysosporium were observed at pH 6.0. The reusability experiments and synthetic wastewater studies were carried out with the most effective form, i.e., the NaOH‐treated Phanerochaete chrysosporium biomass. It was observed that the biosorbent could be regenerated using 10 mM HCl solution, with a recovery of up to 98%, and it could be reused in five biosorption‐desorption cycles without any considerable loss in biosorption capacity. The alkali‐treated Phanerochaete chrysosporium removed 73% of Cd(II) and 81% of Hg(II) ions from synthetic wastewater.  相似文献   

11.
The species of Aspergillus niger Tiegh isolated from estuarine sediments has been studied for tolerance to heavy metals such as Hg and Pb and for its capacities to uptake metals. A. niger was allowed to grow in monometal- as well as bimetal-containing media (25 mg L?1) to determine the biosorption capacity of the organism. The effects of temperature and pH on biosorption were studied to elucidate the biosorption property and optimum growth conditions for the organism. Results revealed that 91.1% of Pb and 97.1% of Hg were removed from the monometal solutions, and there was a reduction of 96.9% of Hg and 89.3% of Pb from the bimetal solution after 92 h of fungal growth. The binding mechanism involved between metal ion and functional groups present on the cell surface of the biomass was studied using Fourier transform infrared (FTIR), which confirms the presence of amine, hydroxyl, carboxyl, and phosphate groups. The adsorption of metal ions on the biomass surface was confirmed using scanning electron microscopy–energy dispersive x-ray (SEM-EDAX) studies. The experimental study proved that A. Niger can be used as a suitable biosorption agent for removing metal ions when present in low concentration.  相似文献   

12.
Biosorptive capacity of Pb(II), Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri was investigated based on Langmuir and Freundlich isotherms. Biosorptive capacity for Pb(II), Cd(II) and Cu(II) decreased with an increase of metal concentration, reaching 142, 43.5 and 36.2 mg/g at initial concentration of 300 mg/l, respectively. Biosorption capacity for metal ions increased with increasing pH. The optimum pH for biosorption rate of Cd(II) and Cu(II) were 5.0, and 6.0 for Pb(II) biosorption. The experimental data showed a better fit with the Langmuir model over the Freundlich model for metal ions throughout the range of initial concentrations. The maximum sorptive capacity (q max) obtained from the Langmuir equation for Pb(II), Cd(II) and Cu(II) were 153.3 (r 2  = 0.998), 43.86 (r 2  = 0.995), and 33.16 (r 2  = 0.997) for metal ions, respectively. The selectivity order for metal ions towards the biomass of P. stutzeri was Pb(II) > Cd(II) > Cu(II) for a given initial metal ions concentration. The interactions between heavy metals and functional groups on the cell wall surface of bacterial biomass were confirmed by FTIR analysis. The results of this study indicate the possible removal of heavy metals from the environment by using lyophilized cells of P. stutzeri.  相似文献   

13.
The present work deals with the biosorption performance of raw and chemically modified biomass of the brown seaweed Lobophora variegata for removal of Cd(II) and Pb(II) from aqueous solution. The biosorption capacity was significantly altered by pH of the solution delineating that the higher the pH, the higher the Cd(II) and Pb(II) removal. Kinetic and isotherm experiments were carried out at the optimal pH 5.0. The metal removal rates were conspicuously rapid wherein 90% of the total sorption occurred within 90 min. Biomass treated with CaCl2 demonstrated the highest potential for the sorption of the metal ions with the maximum uptake capacities i.e. 1.71 and 1.79 mmol g−1 for Cd(II) and Pb(II), respectively. Kinetic data were satisfactorily manifested by a pseudo-second order chemical sorption process. The process mechanism consisting of both surface adsorption and pore diffusion was found to be complex. The sorption data have been analyzed and fitted to sorption isotherm of the Freundlich, Langmuir, and Redlich–Peterson models. The regression coefficient for both Langmuir and Redlich–Peterson isotherms were higher than those secured for Freundlich isotherm implying that the biosorption system is possibly monolayer coverage of the L. variegata surface by the cadmium and lead ions. FT-IR studies revealed that Cd(II) and Pb(II) binding to L. variegata occurred primarily through biomass carboxyl groups accompanied by momentous interactions of the biomass amino and amide groups. In this study, we have observed that Lvariegata had maximum biosorption capacity for Cd(II) and Pb(II) reported so far for any marine algae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Summary An indigenous strain of blue green microalga, Synechococcus sp., isolated from wastewater, was immobilized onto loofa sponge discs and investigated as a potential biosorbent for the removal of cadmium from aqueous solutions. Immobilization has enhanced the sorption of cadmium and an increase of biosorption (21%) at equilibrium was noted as compared to free biomass. The kinetics of cadmium biosorption was extremely rapid, with (96%) of adsorption within the first 5 min and equilibrium reached at 15 min. Increasing initial pH or initial cadmium concentration resulted in an increase in cadmium uptake. The maximum biosorption capacity of free and loofa immobilized biomass of Synechococcus sp. was found to be 47.73 and 57.76 mg g−1 biomass respectively. The biosorption equilibrium was well described by Langmuir adsorption isotherm model. The biosorbed cadmium was desorbed by washing the immobilized biomass with dilute HCl (0.1 M) and desorbed biomass was reused in five biosorption–desorption cycles without an apparent decrease in its metal biosorption capacity. The metal removing capacity of loofa immobilized biomass was also tested in a continuous flow fixed-bed column bioreactor and was found to be highly effective in removing cadmium from aqueous solution. The results suggested that the loofa sponge-immobilized biomass of Synechococcus sp. could be used as a biosorbent for an efficient removal of heavy metal ions from aqueous solution.  相似文献   

15.
Sepia eumelanin is associated with many metal ions, yet little is known about its metal binding capacity and the chemical nature of the binding site(s). Herein, the natural concentrations of metal ions are presented and the ability to remove metals by exposure of the melanin granules to EDTA is quantified. The results reveal that the binding constants of melanin at pH 5.8 for Mg(II), Ca(II), Sr(II) and Cu(II) are, respectively, 5, 4, 14 and 34 times greater than the corresponding binding constants of these ions with EDTA. By exposing Sepia eumelanin to aqueous solutions of FeCl3, the content of bound Fe(III) can be increased from a natural concentration of ~180 ppm to a saturation limit of ~80 000 ppm or 1.43 mmol/g of melanin. Similar saturation limits are found for Mg(II) and Ca(II). Exposure of Sepia melanin granules to aqueous solutions containing Ca(II) results in the stoichiometric replacement of the initially bound Mg(II), arguing that these two ions occupy the same binding site(s) in the pigment. The pH‐dependent binding of Mg(II) and Ca(II) suggests coordination of these ions to carboxylic acid groups in the pigment. Mg(II) and Ca(II) can be added to a Fe(III)‐saturated melanin sample without affecting the amount of Fe(III) pre‐adsorbed, clearly establishing Fe(III) and Mg(II)/Ca(II) occupy different binding sites. Taking recent Raman spectroscopic data into account, the binding of Fe(III) is concluded to involve coordination to o‐dihydroxyl groups. The effects of metal ion content on the surface morphology were analyzed. No significant changes were found over the full range of Fe(III) concentration studied, which is supported by the Brunauer–Emmett–Teller surface area analysis. These observations imply the existence of channels within the melanin granules that can serve to transport metal ions.  相似文献   

16.
Multiple microorganisms directly or treated with NaOH were immobilized by using Ca-alginate embedding to form biosorbents I and II, successively. The biosorption behaviors of biosorbents I and II for Pb(II) from aqueous solution were investigated in a batch system. Effects of solution pH, initial metal concentration, biosorbent dosage, contact time, temperature, and ionic strength on the adsorption process were considered to study the biosorption equilibrium, kinetics, thermodynamics, and mechanism of Pb(II) ion adsorption on the 2 types of biosorbents. The results showed that the adsorption capacity of biosorbent II for Pb(II) was higher than that of biosorbent I, and biosorbent II had a faster adsorption rate for Pb(II) ions. According to FTIR spectra, the carboxyl, amine, and hydroxyl groups on the biomass surface were involved in the biosorption of Pb(II). EDX analysis showed that ion exchange may be involved in the biosorption process, and the morphology observed by SEM micrograph of biosorbent I was completely different from that of biosorbent II. Desorption and regeneration experiments showed that the 2 types of biosorbents could be reused for 3 biosorption-desorption cycles without significant loss of their initial biosorption capacities.  相似文献   

17.
Biosorption is an innovative and alternative technology to remove heavy metal pollutants from aqueous solution using live, inactive and dead biomasses such as algae, bacteria and fungi. In this study, live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was applied as heavy metal adsorbent material. Biosorption of copper(II) cations in aqueous solution by live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was investigated to study the effects of initial heavy metal concentration, pH, temperature, contact time, agitation rate and amount of fungus. Copper(II) was taken up quickly by fungal biomass (live or dried) during the first 15 min and the most important factor which affected the copper adsorption by live and dried biomass was the pH value. An initial pH of around 5.0 allowed for an optimum adsorption performance. Live biomass of two white rot fungi showed a high copper adsorption capacity compared with dried biomass. Copper(II) uptake was found to be independent of temperature in the range of 20–45 °C. The initial metal ion concentration (10–300 mg/L) significantly influenced the biosorption capacity of these fungi. The results indicate that a biosorption as high as 40–60 % by live and dried biomass can be obtained under optimum conditions.  相似文献   

18.
An improved method for production of silica from rice hull ash   总被引:11,自引:0,他引:11  
Biosorption of monovalent ions Na+ and K+, by deactivated protonated yeast (Saccharomyces cerevisiae) at controlled pH, was compared with biosorption of divalent ions Ca2+ and Mg2+ to help to understand the underlying bindingmechanisms. The adsorption for monovalent ions was accompanied by H+ release. Divalent ions were sorbed by proton displacement, and also an additional mode not accompanied by release of H+. The sorption uptake of both monovalent and divalent metal ions increased with pH in the range 3-7 peaking at 6.75. Equilibrium sorption isotherms at pH = 6.75 showed that the totalmaximum biosorptive capacity for metal ions decreased in the following order: Ca > Mg > Na > or = K.  相似文献   

19.
The present study reports the feasibility of using Rhodotorula glutinis biomass as an alternative low-cost biosorbent to remove Ni(II) ions from aqueous solutions. Acetone-pretreated R. glutinis cells showed higher Ni(II) biosorption capacity than untreated cells at pH values ranging from 3 to 7.5, with an optimum pH of 7.5. The effects of other relevant environmental parameters, such as initial Ni(II) concentration, shaking contact time and temperature, on Ni(II) biosorption onto acetone-pretreated R. glutinis were evaluated. Significant enhancement of Ni(II) biosorption capacity was observed by increasing initial metal concentration and temperature. Kinetic studies showed that the kinetic data were best described by a pseudo-second-order kinetic model. Among the two-, three-, and four-parameter isotherm models tested, the Fritz-Schluender model exhibited the best fit to experimental data. Thermodynamic parameters (activation energy, and changes in activation enthalpy, activation entropy, and free energy of activation) revealed that the biosorption of Ni(II) ions onto acetone-pretreated R. glutinis biomass is an endothermic and non-spontaneous process, involving chemical sorption with weak interactions between the biosorbent and Ni(II) ions. The high sorption capacity (44.45 mg g−1 at 25°C, and 63.53 mg g−1 at 70°C) exhibited by acetone-pretreated R. glutinis biomass places this biosorbent among the best adsorbents currently available for removal of Ni(II) ions from aqueous effluents.  相似文献   

20.
Little work has been done on root exudation in soybean under P deficiency. This study examined the effect of P supply on release of protons and carboxylates by roots of soybean (Glycine max Heinong 35), and to correlate the release with excess uptake of cations over anions. Plants were either reliant on N2 fixation or supplied with nitrate and were grown in nutrient solution with 1–50 μM P for 7 weeks. Release of protons and carboxylates from roots, and concentrations of Ca, Mg, K, Na, P, S, Cl and N in plants were measured weekly from week 4. Unlike in many other species, P deficiency decreased proton release per unit root biomass in N2-fixing plants and increased release of hydroxyl ions in nitrate-fed soybean. While P deficiency generally decreased uptake of K, Ca, Mg, S, Cl and P, it increased nitrate uptake per unit root biomass. Irrespective of P supply, amounts of protons released correlated well with excess uptake of cations over anions by the roots. Phosphorus deficiency increased release of carboxylates but the amounts released were small. The results suggest that soybean displays strategies of P acquisition through decreasing proton release which favors P mobilization in acid soils, and increasing root-to-shoot ratio and specific root length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号