首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drought stress promotes biochemical and physiological alterations in plant metabolism that limit growth and yield. This study investigated the accumulation of γ-aminobutyric acid (GABA) in plant tissue, the stomatal conductance (gs) and changes in leaf anatomy in Eucalyptus following drought stress situation. In this study, eight Eucalyptus clones were evaluated under normal water supply (control) and drought stress conditions (stress). For the control treatment, plants were irrigated every day with an automated system until the soil was saturated, and for the stress treatment, drought stress was imposed by non-irrigation of plants, and pots were covered using plastic sheeting to avoid rainfall and humidity. This study has shown that: (1) all clones decreased gs with increasing vapor pressure deficit (D) in both treatments. All plastics and drought-tolerant clones (except GG) presented lower stomatal sensitivity to D under stress conditions than drought-sensitive clones; (2) GABA concentrations increased fast after drought stress, but we could not find correlation with these changes and resistance to water stress; and (3) all clones increased the number of stomata and reduced leaf thickness after water stress. The finding is that GABA is a fast stress-signaling molecule in Eucalyptus, but the response of gs to D is a best physiological variable to differentiate drought-tolerant and drought-sensitive Eucalyptus clones.  相似文献   

2.
The present study aimed to determine effects of drought stress on Lycium ruthenicum Murr. seedlings. Our results showed that mild drought stress was beneficial to growth of L. ruthenicum seedlings. Their height, basal diameter, crown, leaf number, stem dry mass, leaf and root dry mass increased gradually when the soil water content declined from 34.7 to 21.2%. However, with further decrease of the soil water content, the growth of L. ruthenicum seedlings was limited. After 28 d of treatment, the seedlings were apparently vulnerable to drought stress, which resulted in significant leaf shedding and slow growth. However, growth was restored after rehydration. Drought treatments led to a decrease in contents of chlorophyll (Chl) a, b, and Chl (a+b) and increase in the Chl a/b ratio. After rewatering, the Chl content recovered to the content of the control plants. Under drought stress, minimal fluorescence and nonphotochemical quenching coefficient increased, thereby indicating that L. ruthenicum seedlings could protect PSII reaction centres from damage. Maximum fluorescence, maximum quantum yield, actual quantum yield of PSII photochemistry, and photochemical quenching decreased, which suggested that drought stress impacted the openness of PSII reaction centres. A comparison of these responses might help identify the drought tolerance mechanisms of L. ruthenicum. This could be the reference for the planting location and irrigation arrangements during the growing period of L. ruthenicum.  相似文献   

3.
The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length AQP complementary DNAs (cDNAs) were isolated from Robinia pseudoacacia, named RpTIP1;1, RpTIP1;3, RpTIP2;1, RpPIP1;1, RpPIP1;3, and RpPIP2;1. A phylogenetic analysis of deduced amino acid sequences demonstrated that putative proteins coded by these RpAQP genes belong to the water channel protein family. Expression analysis revealed higher RpPIP expression in roots while RpTIP expression was higher in leaves, except for RpTIP1;3. AM symbiosis regulated host plant AQPs, and the expression of RpAQP genes in mycorrhizal plants depended on soil water condition and plant tissue. Positive effects were observed for plant physiological parameters in AM plants, which had higher dry mass and lower water saturation deficit and electrolyte leakage than non-AM plants. Rhizophagus irregularis inoculation also slightly increased leaf net photosynthetic rate and stomatal conductance under well-watered and drought stress conditions. These findings suggest that AM symbiosis can enhance the drought tolerance in Robinia pseudoacacia plants by regulating the expression of RpAQP genes, and by improving plant biomass, tissue water status, and leaf photosynthesis in host seedlings.  相似文献   

4.

Key message

Stomatal regulation involves beneficial effects of pruning mulch and irrigation on leaf photosynthesis in Prunus yedoensis and Ginkgo biloba under moderate drought. G. biloba showed conservative water use under drought.

Abstract

Leaf photosynthesis is highly sensitive to soil water stress via stomatal and/or biochemical responses, which markedly suppress the growth of landscape trees. Effective irrigation management to maintain leaf photosynthesis and information on species-specific photosynthetic responses to soil water stress are essential for the sustainable management of landscape trees in Japan, in which summer drought often occurs. In order to investigate effective irrigation management, we used plants with moderate soil water stress as controls, and examined the effects of daily irrigation and pruning mulch on leaf photosynthesis in container-grown Ginkgo biloba and Prunus yedoensis, which are the first and second main tall roadside trees in Japan. Stomatal conductance was significantly increased by pruning mulch and daily irrigation, with similar increases in leaf photosynthesis being observed in P. yedoensis and G. biloba. In order to obtain information on species-specific photosynthetic responses to soil water stress, we compared the responses of leaf photosynthesis and leaf water status to reductions in soil water content (SWC) between the two species. G. biloba maintained a constant leaf water potential, leaf water content, maximum carboxylation rate, and electron transport rate with reductions in SWC, whereas reductions were observed in P. yedoensis. We concluded that pruning mulch and irrigation effectively offset the negative impact of moderate water stress on leaf photosynthesis in summer in P. yedoensis and G. biloba via stomatal regulation, and also that G. biloba maintained its photosynthetic biochemistry and leaf water status better than P. yedoensis under severe water stress.
  相似文献   

5.
6.
We conducted an experiment to assess the predictive capability of a leaf optical meter for determining leaf pigment status of Acer mono Maxim., A. ginnala Maxim., Quercus mongolica Fisch., and Cornus alba displaying a range of visually different leaf colors during senescence. Concentrations of chlorophyll (Chl) a, Chl b, and total Chl [i.e., Chl (a+b)] decreased while the concentration of carotenoids (Car) remained relatively static for all species as leaf development continued from maturity to senescence. C. alba exhibited the lowest average concentration of Chl (a+b), Chl a, and Car, but the highest relative anthocyanin concentration, while Q. mongolica exhibited the highest Chl (a+b), Chl b, and the lowest relative anthocyanin concentration. A. mono exhibited the highest Chl a and Car concentrations. The relationships between leaf pigments and the values measured by the optical meter generally followed an exponential function. The strongest relationships between leaf pigments and optical measurements were for A. mono, A. ginnala, and Q. mongolica (R 2 ranged from 0.64 to 0.95), and the weakest relationships were for C. alba (R 2 ranged from 0.13 to 0.67). Moreover, optical measurements were more strongly related to Chl a than to Chl b or Chl (a+b). Optical measurements were not related to Car or relative anthocyanin concentrations. We predicted that weak relationships between leaf pigments and optical measurements would occur under very low Chl concentrations or under very high anthocyanin concentrations; however, these factors could not explain the weak relationship between Chl and optical measurements observed in C. alba. Overall, our results indicated that an optical meter can accurately estimate leaf pigment concentrations during leaf senescence — a time when pigment concentrations are dynamically changing — but that the accuracy of the estimate varies across species. Future research should investigate how species-specific leaf traits may influence the accuracy of pigment estimates derived from optical meters.  相似文献   

7.

Background

Liriodendron is a genus of Magnoliaceae, which consists of two relict species, Liriodendron chinense and L. tulipifera. Although the morphologies are highly similar, the two species exhibit different adaptive capacity. Dehydrins (DHNs) are abiotic stresses resistant proteins in planta, which are associated with adaptive evolution. To better understand the evolution divergence between L. chinense and L. tulipifera and how DHN genes are associated with adaptation evolution, we firstly investigated the DNA polymorphisms of the LcDHN-like gene in 21?L. chinense and 6?L. tulipifera populations.

Results

A 707?bp LcDHN-like gene was cloned, which included a 477?bp open reading frame (ORF) and coding 158 amino acids. 311 LcDHN-like gDNA sequences were obtained from 70?L. chinense and 35?L. tulipifera individuals. The AMOVA and phylogenetic relationship analysis showed significant differences between the two species. A higher genetic diversity was observed in L. tulipifera compared to L. chinense, in consistent with the higher adaptive capacity of L. tulipifera. Our data also suggested that the LcDHN-like genes’ polymorphisms were under neutral mutation and purifying selection model in the L. chinense and L. tulipifera populations, respectively. The distinct expanding range and rate between the two species, haplotypes shared only in L.chinense’s nearby populations, and wide dispersals in L. tulipifera could contribute to the obscure east-west separation in L. chinense and entirely unordered phylogeny in L. tulipifera. The completely separated nonsynonymous substitution at position 875 and the higher range scope of aliphatic index in L. tulipifera populations may be related with its higher adaptive capacity. Taken together, our study suggests LcDHN-like gene is a potential mark gene responsible for adaptive evolution divergence in Liriodendron.

Conclusions

Significant differences and completely distinct haplogroups between L. chinense and L. tulipifera showed that the two species have evolved into different directions. The more widely distribution, earlier haplogroups divergence events, and richer SNPs variations in L. tulipifera could imply its stronger adaptation in this species. And potential effect of the allelic variations in LcDHN-like gene may reflect the difference of water stress and chill tolerance between L. chinense and L. tulipifera, which could provide some information for further adaption evolution studies of Liriodendron.
  相似文献   

8.
The interactive effects of shade and drought on the morphological and physiological traits of Catalpa bungei plantlets were assessed. Seedling growth, biomass, biomass allocation, leaf morphology, chlorophyll (Chl) content and gas-exchange parameters were measured in plants raised for 3 months under three light levels [80% (HI), 50% (MI), 30% (LI)] and two water levels [moisture (M) and drought (D)]. The results showed that shade greatly decreased growth, biomass, leaf area (LA) and Chl a/b; increased specific leaf area (SLA) and Chl content; and reduced photosynthetic rate (P n). Drought reduced the growth, biomass, LA, SLA, Chl a/b, P n, stomatal conductance (G s), transpiration rate (T r) and intercellular carbon dioxide concentration (C i) and increased the Chl content. Stomatal closure was an early physiological response to water stress. Light, water and their interaction significantly affected plant traits and their bivariate relationships. The phenotypic plasticity index of light (0.47) was much higher than that of water (0.21), indicating that light was the main driver of the variations observed. Under drought stress, growth, biomass, leaf and stem biomass allocation significantly decreased in the HI and MI environments, whereas no significant difference was observed in growth or biomass parameters under the LI condition. Furthermore, no significant difference was observed in P n, G s, or T r under the LI condition under water stress. Our results showed that shade did not alter the negative effects caused by drought stress in MI but did alleviate the negative effects of the LI condition. In summary, the effect of drought on C. bungei plantlets depends on the irradiance conditions.  相似文献   

9.
10.
11.
Salicylic acid (SA) functions in the plant response to drought stress were assessed using SA-altering Arabidopsis mutants, including snc1 (with constitutively high levels of SA) and its nahG-transformed plants (named as snc1/nahG, with a comparable SA level to the wild type), sid2 and transgenic line nahG (both with SA deficiency), and npr1-1 (with SA signaling blockage). The drought stress was simulated by polyethylene glycol (PEG)-6000 treatment. Compared with wild-type (wt) plants, the snc1 plants displayed obvious easing of PEG-induced growth inhibition, leaf water loss, and photosynthesis-related impairment, whereas in nahG, sid2, and npr1-1 mutants the effect was more severe. PEG stress reduced stomatal conductance, to a higher extent in the snc1 line, whereas it was lower in nahG, sid2, and npr1-1 lines as compared with the wt. The snc1 plants accumulated higher levels of H2O2 than the other genotypes tested. PEG stress increased activities of superoxide dismutase and peroxidase, but decreased activities of catalase in all lines tested, to a greater extent in snc1 and less in sid2, nahG, and npr1-1 relative to wt. Proline was significantly increased, especially in snc1 line at 6 % and higher PEG stress. Noticeably, the performance of snc1 under PEG stress was dependent on SA levels, as the expression of nahG in snc1 plants did not only significantly reduce SA levels, but largely reversed the above-mentioned parameters, as well as eliminated the drought tolerance. Based on these data, it was concluded that endogenous SA levels and signaling provided a protective role in the Arabidopsis response to PEG-simulated drought.  相似文献   

12.
13.
14.
To face summer drought and wildfire in Mediterranean-type ecosystems, plants adopt different strategies that involve considerable rearrangements of biomass allocation and physiological activity. This paper analyses morphological and physiological traits in seedlings of three oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) co-occurring under natural conditions. The aim of this study was to evaluate species-specific characteristics and the response of these oak seedlings to drought stress and fire treatment. Seedlings were kept in a growth chamber that mimicked natural environmental conditions. All three species showed a good degree of tolerance to drought and fire treatments. Differences in specific biomass allocation patterns and physiological traits resulted in phenotypic differences between species. In Q. ilex, drought tolerance depended upon adjustment of the allocation pattern. Q. trojana seedlings undergoing mild to severe drought presented a higher photosystem II (PSII) efficiency than control seedlings. Moreover, Q. trojana showed a very large root system, which corresponded to higher soil area exploitation, and bigger leaf midrib vascular bundles than the other two species. Morphological and physiological performances indicated Q. trojana as the most tolerant to drought and fire. These characteristics contribute to a high recruitment potential of Q. trojana seedlings, which might be the reason for the dominance of this species under natural conditions. Drought increase as a result of climate change is expected to favour Q. trojana, leading to an increase in its spatial distribution.  相似文献   

15.
16.
17.
Wild relatives of Brassica are a rich reservoir of genes that are invaluable for the improvement of cultivated species. Sinapis alba is a close relative of crop Brassicas that possesses several desirable traits such as tolerance to Alternaria black spot disease, heat stress, insect pests and nematodes. This study is aimed at developing and characterizing hybrids between Brassica juncea and S. alba with the ultimate goal of transferring genes for tolerance to Alternaria brassicae and heat stress, the traits that are lacking in cultivated Brassica. We generated three hybrids between B. juncea and S. alba through protoplast fusion. The hybridity was confirmed through cytology and molecular markers. While two of the hybrids were symmetric, the third one was asymmetric and had greater resemblance to B. juncea. Hybrids showed some characteristic features of the parents and were fully male and female fertile and also set seeds upon back crossing with the parent species. In vitro leaf assay and field inoculation studies revealed that the hybrids are highly resistant to A. brassicae. Besides, hybrids set seeds at temperature of >?38 °C when parents failed to produce seeds indicating that hybrids possess heat tolerance. These stable hybrids provide a reliable genetic resource for transfer of genes from S. alba into cultivated Brassica species.  相似文献   

18.
Zea mays L. is less tolerant to drought than Sorghum bicolor L. In the present study, we investigated the response of both plants to drought stress applied under field conditions by withholding water for 10 d. The plant growth in terms of shoot fresh and dry masses was more severely reduced in maize than in sorghum, consistently with reduction of leaf relative water content. Gas exchange was also more inhibited by drought in maize than in sorghum. The water use efficiency (WUE) of maize fluctuated during the day and in response to the drought stress. In contrast, sorghum was able to maintain a largely constant WUE during the day in the well-watered plants as well as in the stressed ones. Studying the expression of four aquaporin genes (PIP1;5, PIP1;6, PIP2;3, and TIP1;2) revealed that PIP1;5 in leaves and PIP2;3 in roots were highly responsive to drought in sorghum but not in maize, where they might have supported a greater water transport. The expression pattern of PIP1;6 suggests its possible role in CO2 transport in control but not droughty leaves of both the plants. TIP1;2 seemed to contribute to water transport in leaves of the control but not droughty plants. We conclude that PIP1;5 and PIP2;3 may have a prominent role in drought tolerance and maintenance of WUE in sorghum plants.  相似文献   

19.
Pistachio (Pistacia vera L.) has a high tolerance to drought and soil salinity. Although adult pistachio trees are well known to be drought tolerant, the studies on physiological adaptation of pistachio cultivars to drought are limited. Therefore, three pistachio cultivars, i.e., Akbari, Kaleghochi, and Ohadi were subjected to three osmotic drought stress treatments: control (?0.1 MPa), moderate (?0.75 MPa) and severe drought (?1.5 MPa) stress using PEG 6000 for a 14-day period. All drought stress treatments decreased net photosynthesis (P n), stomatal conductance (g s), intercellular CO2 concentration (C i), and transpiration rate (E), but Ohadi maintained better its photosynthetic capacity compared to Akbari and Kaleghochi. Maximum quantum yield of PSII photochemistry (F v /F m), effective PSII quantum yield (ΦPSII) and photochemical quenching (qP) were also reduced. The chlorophyll fluorescence parameters indicated that Akbari was more susceptible to the applied drought stress. Drought stress levels decreased chlorophyll pigments, fresh weight, stem elongation, leaf nitrogen content (N), leaf water potential and increased water use efficiency (WUE). Proline increased strongly under drought stress for Akbari. After 2 weeks of stress a recovery of 2 weeks was applied. This period was insufficient to fully restore the negative effects of the applied stress on the studied cultivars. Based on the reduction of photosynthesis and the increase of the proline content Akbari seems more sensitive to the applied drought stress.  相似文献   

20.
The plasticity response of Quercus variabilis and Quercus mongolica seedlings to combined nitrogen (N) deposition and drought stress was evaluated, and their performance in natural niche overlaps was predicted. Seedlings in a greenhouse were exposed to four N deposition levels (0, 4, 8, and 20 g N m?2 year?1) and two water levels (80 and 50 % field-water capacity). Plant traits associated with growth, biomass production, leaf physiology, and morphology were determined. Results showed that drought stress inhibited seedling performance, altered leaf morphology, and decreased fluorescence parameters in both species. By contrast increased N supply had beneficial effects on the nutritional status and activity of the PSII complex. The two species showed similar responses to drought stress. Contrary to the effects in Q. mongolica, N deposition promoted leaf N concentration, PSII activity, leaf chlorophyll contents, and final growth of Q. variabilis under well-watered conditions. Thus, Q. variabilis was more sensitive to N deposition than Q. mongolica. However, excessive N supply (20 g N m?2 year?1) did not exert any positive effects on the two species. Among the observed plasticity of the plant traits, plant growth was the most plastic, and leaf morphology was the least plastic. Therefore, drought stress played a primary role at the whole-plant level, but N supply significantly alleviated the adverse effects of drought stress on plant physiology. A critical N deposition load around 20 g N m?2 year?1 may exist for oak seedlings, which may more adversely affect Q. variabilis than Q. mongolica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号