首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TSLC1/IGSF4, an immunoglobulin superfamily molecule, is predominantly expressed in the brain, lungs, and testes and plays important roles in epithelial cell adhesion, cancer invasion, and synapse formation. We generated Tslc1/Igsf4-deficient mice by disrupting exon 1 of the gene and found that Tslc1(-/-) mice were born with the expected Mendelian ratio but that Tslc1(-/-) male mice were infertile. In 11-week-old adult Tslc1(-/-) mice, the weight of a testis was 88% that in Tslc1(+/+) mice, and the number of sperm in the semen was approximately 0.01% that in Tslc1(+/+) mice. Histological analysis revealed that the round spermatids and the pachytene spermatocytes failed to attach to the Sertoli cells in the seminiferous tubules and sloughed off into the lumen with apoptosis in the Tslc1(-/-) mice. On the other hand, the spermatogonia and the interstitial cells, including Leydig cells, were essentially unaffected. In the Tslc1(+/+) mice, TSLC1/IGSF4 expression was observed in the spermatogenic cells from the intermediate spermatogonia to the early pachytene spermatocytes and from spermatids at step 7 or later. These findings suggest that TSLC1/IGSF4 expression is indispensable for the adhesion of spermatocytes and spermatids to Sertoli cells and for their normal differentiation into mature spermatozoa.  相似文献   

2.
Kim N  Xiao R  Choi H  Jo H  Kim JH  Uhm SJ  Park C 《Molecules and cells》2011,31(1):39-48
Homozygous Purkinje cell degeneration (pcd) mutant males exhibit abnormal sperm development. Microscopic examination of the testes from pcd(3J)-/- mice at postnatal days 12, 15, 18 and 60 revealed histological differences, in comparison to wild-type mice, which were evident by day 18. Greatly reduced numbers of spermatocytes and spermatids were found in the adult testes, and apoptotic cells were identified among the differentiating germ cells after day 15. Our immunohistological analysis using an antihuman AGTPBP1 antibody showed that AGTPBP1 was expressed in spermatogenic cells between late stage primary spermatocytes and round spermatids. A global gene expression analysis from the testes of pcd(3J)-/- mice showed that expression of cyclin B3 and de-ubiquitinating enzymes USP2 and USP9y was altered by >1.5-fold compared to the expression levels in the wild-type. Our results suggest that the pcd mutant mice have defects in spermatogenesis that begin with the pachytene spermatocyte stage and continue through subsequent stages. Thus, Agtpbp1, the gene responsible for the pcd phenotype, plays an important role in spermatogenesis and is important for survival of germ cells at spermatocytes stage onward.  相似文献   

3.
Csnk2a2 encodes the CK2alpha'catalytic subunit of CK2 that is predominantly expressed in testis. Male mice in which Csnk2a2 has been disrupted were infertile and displayed oligozoospermia with an abnormal shape of the spermatid nucleus. In this study, Csnk2a2 null testes revealed extensive germ cell degenerative processes at all stages of spermatogenesis, including the first spermatogenesis wave. Nuclear envelope (NE) protrusions with loss of nuclear pores, swelling of the outer membrane, and disruption of the inner membrane were observed in cells ranging from spermatogonia to early spermatids. Most early round spermatids were depleted, and DNA-specific fluorescent dyes showed a large chromatin-free nuclear domain near the chromocenter. Spermatids that were not eliminated retained NE defects that could explain the acrosomal and nuclear abnormalities of Csnk2a2 null spermatozoa. Data suggest that CK2alpha' deficiency could impair the phosphorylation of nuclear proteins of male germ cells leading to a particular cell-death pathway characterized by NE protrusions and an unusual pattern of chromatin modifications in spermatids.  相似文献   

4.
RA175/TSLC1/SynCAM/IGSF4A (RA175), a member of the immunoglobulin superfamily with Ca2+-independent homophilic trans-cell adhesion activity, participates in synaptic and epithelial cell junctions. To clarify the biological function of RA175, we disrupted the mouse Igsf4a (Ra175/Tslc1/SynCam/Igsf4a Ra175) gene. Male mice lacking both alleles of Ra175 (Ra175-/-) were infertile and showed oligo-astheno-teratozoospermia; almost no mature motile spermatozoa were found in the epididymis. Heterozygous males and females and homozygous null females were fertile and had no overt developmental defects. RA175 was mainly expressed on the cell junction of spermatocytes, elongating and elongated spermatids (steps 9 to 15) in wild-type testes; the RA175 expression was restricted to the distal site (tail side) but not to the proximal site (head side) in elongated spermatids. In Ra175-/- testes, elongated and mature spermatids (steps 13 to 16) were almost undetectable; round spermatids were morphologically normal, but elongating spermatids (steps 9 to 12) failed to mature further and to translocate to the adluminal surface. The remaining elongating spermatids at improper positions were finally phagocytosed by Sertoli cells. Furthermore, undifferentiated and abnormal spermatids exfoliated into the tubular lumen from adluminal surfaces. Thus, RA175-based cell junction is necessary for retaining elongating spermatids in the invagination of Sertoli cells for their maturation and translocation to the adluminal surface for timely release.  相似文献   

5.
6.
The homeodomain CUX1 protein exists as multiple isoforms that arise from proteolytic processing of a 200-kDa protein or an alternate splicing or from the use of an alternate promoter. The 200-kDa CUX1 protein is highly expressed in the developing kidney, where it functions to regulate cell proliferation. Transgenic mice ectopically expressing the 200-kDa CUX1 protein develop renal hyperplasia associated with reduced expression of the cyclin kinase inhibitor p27. A 55-kDa CUX1 isoform is expressed exclusively in the testes. We determined the pattern and timing of CUX1 protein expression in developing testes. CUX1 expression was continuous in Sertoli cells from prepubertal testes but became cyclic when spermatids appeared. In testes from mature mice, CUX1 was highly expressed only in round spermatids at stages IV-V of spermatogenesis, in both spermatids and Sertoli cells at stages VI-X of spermatogenesis, and only in Sertoli cells at stage XI of spermatogenesis. While most of the seminiferous tubules in wild-type mice were between stages VI and X of spermatogenesis, there was a significant reduction in the percentage of seminiferous tubules between stages VI and X in Cux1 transgenic mice and a significant increase in the percentage of seminiferous tubules in stages IV-V and XI. Moreover, CUX1 was not expressed in proliferating cells in testes from either wild-type or transgenic mice. Thus, unlike the somatic form of CUX1, which has a role in cell proliferation, the testis-specific form of CUX1 is not involved in cell division and appears to play a role in signaling between Sertoli cells and spermatids.  相似文献   

7.
Kawamata M  Nishimori K 《FEBS letters》2006,580(27):6442-6446
Genes including DM domain regulate sexual development in diverse metazoan phyla. One of these genes, Dmrt7, was expressed only in testes of adult mice. To determine the role of Dmrt7 in mice, we generated Dmrt7-knockout mice (Dmrt7-/-). Although the Dmrt7-/- showed normal growth, null males were infertile. No sperm was detected in the epididymis of Dmrt7-/- adult males. Absence of spermatids in a histological analysis, decreased expression of Ccna1 mRNA and the accumulation of SCP3-positive spermatocytes showed the arrest of spermatogenesis at the pachytene stage in the Dmrt7-knockout mice.  相似文献   

8.
9.
LANCL1 (LanC-like protein 1) is related to the bacterial LanC (lanthionine synthetase C) family, which is involved in the biosynthesis of antimicrobial peptides. Highest expression levels of LANCL1 are found in testes and brain, two organs that exist behind blood-tissue barriers. In the mouse, the establishment of an impermeable blood-testis barrier occurs between day 10-16 post natal (pn). Differential display analysis showed that the expression level of LANCL1 mRNA in mouse testes was very low until day 16 pn, but increased gradually from day 16 pn to reach a maximum on days 22-24 pn followed by a slight reduction from day 26 pn to adult animals. Thus, the expression of LANCL1 mRNA is initiated following the establishment of the blood-testis barrier. In situ hybridisation revealed that LANCL1 mRNA was induced in diplotene spermatocytes, which appear for the first time in mouse testes between days 18 and 20 pn, verifying the expression profile determined by differential display. LANCL1 mRNA level remained high in the meiotic division phase and in early round spermatids, but was down regulated in elongating spermatids and it was undetectable in step 9 elongating spermatids in stage IX (as defined by Russel et al., 1990). The steady decrease in expression level from round spermatids in stage I to elongating spermatids in stage IX suggested that LANCL1 mRNA was not transcribed in spermatids. LANCL1 expression in rat testes was initiated already in pachytene spermatocytes in stage IX, but otherwise similar to mouse.  相似文献   

10.
Activation of ubiquitination occurs during spermatogenesis and is dependent on the induction of isoforms of the UBC4 family of ubiquitin-conjugating enzymes. The UBC4-testis isoform is testis specific, is induced in round spermatids, and demonstrates biochemical functions distinct from a ubiquitously expressed isoform UBC4-1. To explore further the function of UBC4-testis, mice bearing inactivation of this gene were produced. Homozygous (-/-) mice showed normal body growth and fertility. Although testis weight and morphology were normal in testes from adult mice, examination of young mice during the first wave of spermatogenesis revealed that testes were approximately 10% smaller in weight at 40 and 45 days of age but had become normal at 65 days of age. Overall protein content, levels of ubiquitinated proteins, and ubiquitin-conjugating activity did not differ between wild-type and homozygous (-/-) mice. Spermatid number, as well as the motility of spermatozoa isolated from the epididymis, was also normal in homozygous (-/-) mice. To determine whether the germ cells lacking UBC4-testis might be more sensitive to stress, testes from wild-type and knockout mice were exposed to heat stress by implantation in the abdominal cavity. Testes from both strains of mice showed similar rates of degeneration in response to heat. The lack of an obvious phenotype did not appear to be due to induction of other UBC4 isoforms, as shown by two-dimensional gel immunoblotting. Our data indicate that UBC4-testis plays a role in early maturation of the testis and suggest that the many UBC4 isoforms have mixed redundant and specific functions.  相似文献   

11.
12.
Spermatogenesis consists of complex cellular and developmental processes, such as the mitotic proliferation of spermatogonial stem cells, meiotic division of spermatocytes, and morphogenesis of haploid spermatids. In this study, we show that RNA interference (RNAi) functions throughout spermatogenesis in mice. We first carried out in vivo DNA electroporation of the testis during the first wave of spermatogenesis to enable foreign gene expression in spermatogenic cells at different stages of differentiation. Using prepubertal testes at different ages and differentiation stage-specific promoters, reporter gene expression was predominantly observed in spermatogonia, spermatocytes, and round spermatids. This method was next applied to introduce DNA vectors that express small hairpin RNAs, and the sequence-specific reduction in the reporter gene products was confirmed at each stage of spermatogenesis. RNAi against endogenous Dmc1, which encodes a DNA recombinase that is expressed and functionally required in spermatocytes, led to the same phenotypes observed in null mutant mice. Thus, RNAi is effective in male germ cells during mitosis and meiosis as well as in haploid cells. This experimental system provides a novel tool for the rapid, first-pass assessment of the physiological functions of spermatogenic genes in vivo.  相似文献   

13.
Transition protein 2 is a basic chromosomal protein which functions as an intermediate in the replacement of histones by protamines, and the mitochondrial capsule seleno-protein is a constituent of the outer membrane of mitochondria which functions in constructing the mitochondrial sheath surrounding the flagellum. To determine precisely the stages in spermatogenesis when these mRNAs are present, paraffin sections of sexually mature testes were hybridized to 35S- and 3H-labeled antisense RNAs and exposed to autoradiographic emulsion. The cell types hybridizing to probes in situ were determined by staining with hematoxylin and periodic acid Schiff. The in situ hybridizations reveal that the transition protein 2 mRNA is first detectable in step 7 round spermatids, persists at high levels through step 13, and is degraded before step 14. By contrast, the mitochondrial capsule seleno-protein mRNA is first detected in step 3 round spermatids and persists at high levels until step 16, the end of spermiogenesis. The mitochondrial capsule seleno-protein mRNA appears to be expressed only in haploid cells since low levels could not be detected in Northern blots of RNA from pachytene primary spermatocytes from 18 day prepubertal mice. These results demonstrate that the transition protein 2 and mitochondrial capsule seleno-protein mRNAs are transcribed and degraded at different times during the haploid phase of spermatogenesis.  相似文献   

14.
Recently, we described the identification of a novel protein, nuclear receptor-associated protein 80 (RAP80), which is highly expressed in spermatocytes and appears to have a role in regulating gene expression. To identify proteins interacting with this protein, we performed yeast two-hybrid screening using full-length RAP80 as bait. This screen identified one in-frame clone encoding a novel testis-specific protein (Tsp), referred to as Tsp57. Tsp57 encodes a basic protein with a mass of 56.8 kDa. The amino acid sequence of Tsp57 is highly conserved (87%) between mouse and human. The mouse and human Tsp57 genes map to chromosomes 9A1 and 11q21, respectively. Northern blot analysis showed that the expression of Tsp57 mRNA was highly restricted to the testis and temporally regulated during testicular development. Tsp57 mRNA was greatly induced between Day 21 and Day 25 of postnatal testicular development. In situ hybridization analysis demonstrated that the hybridization signal for Tsp57 mRNA was strongest in sections of seminiferous tubules at stages VI-VIII of spermatogenesis, consistent with the conclusion that Tsp57 is most highly expressed in round spermatids. Study of Tsp57 expression in several purified subpopulations of spermatogenic cells confirmed maximum levels of expression in round spermatids. Consistently, Tsp57 expression was absent in testes from vitamin A-deficient mice, which do not have any round spermatids, and was reduced in RARalpha null mice, which have lowered numbers of round spermatids in their testes. These results indicate the possibility that Tsp57 protein plays a role in the postmeiotic phase of germ cell differentiation. Tsp57 contains two putative nuclear localization signals: NLS1 and NLS2. Examination of the cellular localization showed that the green fluorescent protein-Tsp57 fusion protein localized to both cytoplasm and nucleus. After deletion of NLS1 but not NLS2, Tsp57 localized solely to the cytoplasm, indicating a role for NLS1 in the nuclear localization of Tsp57. The localization suggests a nuclear function for Tsp57. Pull-down analysis demonstrated that Tsp57 and RAP80 form a complex in intact cells.  相似文献   

15.
16.
The presence and biosynthesis of the testis-specific isozyme of lactate dehydrogenase (LDH-X) in cells at various stages of spermatogenesis have been examined. Enrichment of testicular cells in various stages of spermatogenesis has been achieved by two methods: (1) cell separation by velocity sedimentation in the Elutriator rotor and (2) γ irradiation of testes to eliminate specific classes of testicular cells. Separation of cells from immature mice indicated that cells prior to the midpachytene stage contain no LDH-X. Measurement of LDH-X levels in cells separated from adult mice and in testicular homogenates prepared at various times after irradiation indicated that the highest level of LDH-X per cell (normalized for DNA content) was in spermatids. Synthesis of LDH-X was determined, after in vivo injection of [3H]valine, by measurement of the radioactivity in LDH-X precipitated with specific antiserum. After irradiation, the rate of LDH-X synthesis remained constant, despite the loss of early primary spermatocytes. In separated cells, the rate of LDH-X synthesis was highest in late pachytene spermatocytes, lower in round spermatids, and even lower, but still significant, in elongated spermatids. Therefore, the synthesis of LDH-X begins at a specific point during spermatogenesis, the midpachytene stage of spermatocyte development, and continues throughout spermatid differentiation.  相似文献   

17.
Ubiquitination is required throughout all developmental stages of mammalian spermatogenesis. Ubiquitin C-terminal hydrolase (UCH) L1 is thought to associate with monoubiquitin to control ubiquitin levels. Previously, we found that UCHL1-deficient testes of gad mice have reduced ubiquitin levels and are resistant to cryptorchid stress-related injury. Here, we analyzed the function of UCHL1 during the first round of spermatogenesis and during sperm maturation, both of which are known to require ubiquitin-mediated proteolysis. Testicular germ cells in the immature testes of gad mice were resistant to the early apoptotic wave that occurs during the first round of spermatogenesis. TUNEL staining and cell quantitation demonstrated decreased germ cell apoptosis and increased numbers of premeiotic germ cells in gad mice between Postnatal Days 7 and 14. Expression of the apoptotic proteins TRP53, Bax, and caspase-3 was also significantly lower in the immature testes of gad mice. In adult gad mice, cauda epididymidis weight, sperm number in the epididymis, and sperm motility were reduced. Moreover, the number of defective spermatozoa was significantly increased; however, complete infertility was not detected. These data indicate that UCHL1 is required for normal spermatogenesis and sperm quality control and demonstrate the importance of UCHL1-dependent apoptosis in spermatogonial cell and sperm maturation.  相似文献   

18.
Basal activity and cellular localization of cAMP response element-binding protein (CREB) was examined in mouse testis during postnatal development and spermatogenesis. Testes of ICR mice sampled on postnatal day (PND) 3, 7, 14, 21, 28, 35, 42, and 49 were analyzed using Western blotting. Basal CREB activity was significantly higher in early phase (PND 3–7) developing testes than in intermediate- and late-phase developing (PND 14–42) and adult testes (PND 49). Furthermore, immunohistochemical analysis demonstrated the change of CREB phosphorylation in various testicular cell types during postnatal development. In particular, CREB phosphorylation in seminiferous tubules of the adult testis varied according to the spermatogenic cycle, while phosphorylation was evident in spermatogonia during all stages. Phosphorylation was moderate in pachytene spermatocytes of stages I–III and intense in round and elongate spermatids of spermiogenesis in stages XII–IX. These results suggest that CREB plays an important role in cell proliferation and differentiation in the early phase of postnatal development and spermatogenesis of mouse testis.  相似文献   

19.
The severe degeneration of the germinal epithelium and subsequent male sterility observed in mice null for the retinoic acid receptor alpha (RARalpha) gene suggested its critical role in spermatogenesis, although the etiology and progression of these abnormalities remain to be determined. Previous studies have revealed that elongated spermatids in RARalpha(-/-) testes were improperly aligned at the tubular lumen and did not undergo spermiation at stage VIII(*). We now report a distinctive failure of step 8-9 spermatids to orient properly with regard to the basal aspect of Sertoli cells, resulting in stage VIII(*)-IX(*) tubules with randomly oriented spermatids. By in situ terminal deoxynucleotidyltransferase-mediated deoxy-UTP nick end labeling (TUNEL), we noted that elongating spermatids frequently underwent apoptosis. Immunohistochemical analysis revealed that while activated caspase-3, the primary effector caspase in the apoptotic cell death machinery, was detected in the nuclei of primary spermatocytes in the first wave of spermatogenesis and occasionally in spermatogonia of both normal and mutant testes, it was not involved in the death of elongating spermatids in RARalpha(-/-) testes. Thus, sterility in RARalpha(-/-) males was associated with specific defects in spermiogenesis, which may correlate with a failure in both spermatid release and spermatid orientation to the basal aspect of Sertoli cells at stage VIII(*) in young adult RARalpha(-/-) testis. Further, the resulting apoptosis in elongating spermatids appears to involve pathways other than that mediated by activated caspase-3.  相似文献   

20.
PLIN1, a lipid droplet associated protein, has been implicated in playing a key role in the regulation of lipolysis and lipid storage in adipocytes. PLIN1 is found to be highly expressed in Leydig cells of testis, suggesting a potential role in steroidogenesis and spermatogenesis. In this study, we showed that PLIN1 was expressed in testis and that its mRNA levels declined significantly with development. To investigate the role of PLIN1, we take advantage of PLIN1-null mice. We found that the number of seminiferous tubules containing round spermatids was significantly increased at P21 (postnatal day 21). Furthermore, microarray analysis showed that there were 538 differentially expressed genes between PLIN1-null and wild-type mice at P21. The up-regulated genes in knockout mice were enriched in spermatogenesis by Gene Ontology classification. Among them, Prm1 and Wbp2nl are important for spermatogenesis which were confirmed by real-time PCR. Unexpectedly, the levels of serum testosterone and serum 17β-estradiol as well as steroidogenic genes are not altered in the PLIN1-null mice. Compared to the wild-type mice, no significant difference of fertility was found in the PLIN1-null mice. Therefore, these findings indicated that PLIN1 disruption leads to the increase of round spermatid-containing seminiferous tubules at the meiotic stage of the first wave of spermatogenesis through regulating spermatogenic related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号