首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although the biological significance of individual variation in physiological traits is widely recognized, studies of their association with fitness in wild populations are surprisingly scarce. We investigated the effect of individual phenotypic variation in body mass, resting (RMR) and peak metabolic rates (PMR) on mortality of the root vole Microtus oeconomus. Body mass and metabolic rates varied significantly among consecutive years and were also age dependent, as individuals born in late summer and autumn were characterized by significantly lower body mass and metabolic rates than animals born earlier. At the beginning of winter voles born in spring and early summer exhibited reduced body mass and metabolic rates, whereas animals born later maintained lower body mass and RMR, which may be interpreted as phenotypic plasticity enhancing the probability of survival. Body mass had no significant effect on vole survival during summer. In contrast, smaller individuals were characterized by lower mortality during early winter, whereas higher body mass was positively associated with survival later in the season. High body‐mass‐corrected RMR positively affected survival in both summer and winter. The effect of PMR was apparent only during winter, though its direction (and correlation with RMR) varied among years. Deep snow cover negatively affected the survival of voles in both early and late winter. Ambient temperature was positively associated with winter survival, except for late winter, when rising temperature caused flooding of vole habitat. We conclude that the lack of consistency in the directionality and strength of the effects of body mass and metabolic rates on winter survival does not undermine their importance, but rather demonstrates the ability of individuals to adjust metabolic rate to changing environmental conditions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 297–309.  相似文献   

2.
1.?The effects of environment experienced during early development on phenotype as an adult has started to gain vast amounts of interest in various taxa. Some evidence on long-term effects of juvenile environment is available, but replicated experimental studies in wild animals are still lacking. 2.?Here we report the first replicated experiment in wild mammals which examines the long-term effects of juvenile and adult environments on individual fitness (reproduction, survival and health). The early development of bank vole (Myodes glareolus) individuals took place in either food-supplemented or un-supplemented outdoor enclosures. After the summer, adult individuals were reciprocally changed to either a similar or opposite resource environment to overwinter. 3.?Adult environment had an overriding effect on reproductive success of females so that females overwintering in food-supplemented enclosures had a higher probability of breeding and advanced the initiation of breeding. However, the characteristics of their litters were determined by juvenile environment: females initially grown in food-supplemented conditions subsequently produced larger litters with bigger pups and a male-biased sex ratio. 4.?In males, individuals growing in un-supplemented conditions had the highest survival irrespective of adult environment during winter, whereas in females, neither the juvenile nor adult environments affected their survival significantly. The physiological condition of voles in spring, as determined by haematological parameters, was also differentially affected by juvenile (plasma proteins and male testosterone) and adult (haematocrit) environments. 5.?Our results suggest that (i) life-history trajectories of voles are not strictly specialized to a certain environment and (ii) the plastic life-history responses to present conditions can actually be caused by delayed effects of the juvenile environment. More generally, the results are important for understanding the mechanisms of delayed life-history effects as well as recognizing their population dynamic consequences.  相似文献   

3.
Climate instability strongly affects overwintering conditions in organisms living in a strongly seasonal environment and consequently their survival and population dynamics. Food, predation and density effects are also strong during winter, but the effect of fragmentation of ground vegetation on ground-dwelling small mammals is unknown. Here, we report the results of a winter experiment on the effects of habitat fragmentation and food on experimental overwintering populations of bank voles Myodes glareolus. The study was conducted in large outdoor enclosures containing one large, two medium-sized or four small habitat patches or the total enclosure area covered with protective tall-grass habitat. During the stable snow cover of midwinter, only food affected the overwintering success, body condition, trappability and earlier onset of breeding in bank voles. However, after the snow thaw in spring, habitat fragmentation gained importance again, and breeding activities increased the movements of voles in the most fragmented habitat. The use of an open, risky matrix area increased along the habitat fragmentation. Our experiment showed that long-lasting stable snow cover protects overwintering individuals in otherwise exposed and risky ground habitats. We conclude that a stable winter climate and snow cover should even out habitat fragmentation effects on small mammals. However, along prolonged snow-free early winter and in an earlier spring thaw, this means loss of protection by snow cover both in terms of thermoregulation and predation. Thus, habitat cover is important for the survival of small ground-dwelling boreal mammals also during the non-breeding season.  相似文献   

4.
In territorial microtines intra-specific density dependent processes can limit the maturation of individuals during the summer of their birth. This may have demographic consequences by affecting the number and the age distribution of breeding individuals in the population. Little is known about this process on a community level, though populations of many northern microtine species fluctuate in synchrony and are known to interfere socially with each other. We experimentally studied the influence of the field vole Microtus agrestis on maturation, breeding, space use and survival of weanling bank voles, Clethrionomys glareolus. Two additive competition experiments on bank vole populations were conducted in large outdoor enclosures, half of them additionally housing a field vole population. In a mid-summer experiment low population density and absence of older breeding females minimised intra-specific competition. Survival was not affected by the presence of field voles. Season had a significant effect on both the probability of maturation and breeding of the weanlings. Competition with field voles significantly delayed breeding, and coupled with seasonal effects decreased the probability of breeding. In a late-summer experiment breeding and survival of bank vole weanlings were studied for three weeks as part of a high density breeding bank vole population. Weanlings did not mature at all nor were their space use and survival affected by the presence of field voles. Our results show that competition with other species can also have an impact on breeding of immatures. In an extreme seasonal environment, even a short delay of breeding may decrease survival chances of offspring. Seasonal and competition effects together may thus limit the contribution of year born females to reproductive output of the population. Other studies have shown that adult breeding bank voles suffer lower survival in the presence of field voles, but this study showed no survival effects on the weanlings. Thus it might be beneficial for weanlings to stay immature especially in the end of the breeding season and postpone reproduction to the next breeding season if densities of competing species are high.  相似文献   

5.
Eccard JA  Fey K  Caspers BA  Ylönen H 《Oecologia》2011,167(3):623-633
Indirect resource competition and interference are widely occurring mechanisms of interspecific interactions. We have studied the seasonal expression of these two interaction types within a two-species, boreal small mammal system. Seasons differ by resource availability, individual breeding state and intraspecific social system. Live-trapping methods were used to monitor space use and reproduction in 14 experimental populations of bank voles Myodes glareolus in large outdoor enclosures with and without a dominant competitor, the field vole Microtus agrestis. We further compared vole behaviour using staged dyadic encounters in neutral arenas in both seasons. Survival of the non-breeding overwintering bank voles was not affected by competition. In the spring, the numbers of male bank voles, but not of females, were reduced significantly in the competition populations. Bank vole home ranges expanded with vole density in the presence of competitors, indicating food limitation. A comparison of behaviour between seasons based on an analysis of similarity revealed an avoidance of costly aggression against opponents, independent of species. Interactions were more aggressive during the summer than during the winter, and heterospecific encounters were more aggressive than conspecific encounters. Based on these results, we suggest that interaction types and their respective mechanisms are not either-or categories and may change over the seasons. During the winter, energy constraints and thermoregulatory needs decrease direct aggression, but food constraints increase indirect resource competition. Direct interference appears in the summer, probably triggered by each individual's reproductive and hormonal state and the defence of offspring against conspecific and heterospecific intruders. Both interaction forms overlap in the spring, possibly contributing to spring declines in the numbers of subordinate species.  相似文献   

6.
We studied overwintering in the bank vole Clethrionomys glareolus in four 0.5 ha enclosures in an abandoned field in central Finland in the winter 1987/88. In two of the enclosures food was offered evenly distributed over the whole enclosed area (Even Enclosures = EE), in the two others food was offered in one feeding patch with four feeding chambers 2 m apart (Patchy Enclosures = PE). Food was provided in about the same amount in both enclosures. The experiment commenced in early October, with 13 females and 11 males in EEs and 12 + 13 voles in PEs. After two months the voles in the PEs were concentrated around the feeding patches. Territoriality was not observed in EEs, instead the voles formed small exclusive overwintering groups consisting of 2-3 females and at least one male. The size of the home range of the females and males was identical during mid-winter as the voles were non-breeding. By the onset of breeding, range size increased in both sexes, but significantly more in males, however. The survival was about the same in all populations. Every population showed a mid-winter decline suggesting the effect of the mustelid predators observed in and around the enclosures. In the PEs the overwintering aggregations lasted until the maturation of the first litters. Food distribution affected the spatial distribution of the populations. We conclude that the patchiness of the habitat and especially the availability of food are the most important factors determining the social structure of overwintering populations.  相似文献   

7.
An expanding body of literature has demonstrated that global climate change continues to adversely affect many populations, species, and ecosystems. However, life-history theory also predicts possible benefits from longer growing seasons and less severe winters, particularly for ectotherms. To test the idea that climate change will have benefits as well as costs, I studied the impacts of growing-season length on growth and overwintering conditions on survival time using side-blotched lizards (Uta stansburiana). Experiments in replicate field enclosures revealed that fall growing-season length has a direct effect on overwintering body size. Laboratory experiments revealed that both size and overwintering temperature have direct effects on winter survival time. Larger lizards are more likely to survive longer regardless of winter temperature. Furthermore, animals in colder (but still mild) winter microenvironments are more likely to survive longer than those in warmer winter environments. These results indicate that warmer winters caused by global climate change have the potential to negatively affect ectotherm populations. However, longer growing seasons may offset losses by allowing additional growth and energy storage. Thus, environmental alterations associated with climate change may be simultaneously beneficial and detrimental, and the long-term persistence of certain organisms may depend on the relative strength of their effects.  相似文献   

8.
Body size at birth has implications for the quality of individuals throughout their life. Although large body size is generally considered an advantage, the relationship between body size at birth and long-term fitness is often complicated. Under spatial or temporal variation in environmental conditions, such as the seasonally changing densities of Fennoscandian vole populations, selection should favor variation in offspring phenotypes, as different qualities may be beneficial in different conditions. We performed an experiment in which a novel hormonal manipulation method was used to increase phenotypic variance in body size at birth in the bank vole (Myodes glareolus). The effects of body size on the future fitness of young males and females were then studied at varying population densities in outdoor enclosures. Our results show that small body size at birth and high breeding density increase the survival costs of reproduction. However, there was no interaction between the effects of body size and density on survival, which suggests that the fitness effects of body size were strong enough to persist under environmental variation. Moreover, litter size and the probability of breeding were more sensitive to variation in breeding density than offspring size. Therefore, it is unlikely that individual fitness could be optimized by adjusting offspring body size to the prevailing population density through adaptive maternal effects. Our results highlight the significance of the costs of reproduction in the evolution of life-history traits, and give strong experimental support for the long-term fitness effects of body size at birth.  相似文献   

9.
Large predators may affect the hunting efficiency of smaller ones directly by decreasing their numbers, or indirectly by altering their behaviour. Either way this may have positive effects on the density of shared prey. Using large outdoor enclosures, we experimentally studied whether the presence of the Tengmalm's owl Aegolius funereus affects the hunting efficiency of the smallest member of the vole-eating predator guild, the least weasel Mustela nivalis, as measured by population responses of coexisting prey species, the field vole Microtus agrestis and the sibling vole M. levis . We compared the density and survival probability of vole populations exposed to no predation, weasel predation or combined predation by a weasel and an owl. The combined predation of both owl and weasel did not result in obvious changes in the density of sibling and field vole populations compared to the control populations without predators, while predation by least weasel alone decreased the densities of sibling voles and induced a similar trend in field vole densities. Survival of field voles was not affected by predator treatment while sibling vole survival was lower in predator treated populations than in control populations. Our results suggest that weasels are intimidated by avian predators, but without changing the effects of predators on competitive situations between the two vole species. Non-lethal effects of intraguild predation therefore will not necessarily change competitive interactions between shared prey species.  相似文献   

10.
Three mechanisms have been proposed to induce spatial synchrony in fluctuations of small mammal populations: climate‐related environmental effects, predation and dispersal. We conducted a field experiment in western Finland to evaluate the relative roles of these mechanisms in inducing spatial synchrony among cyclic populations of field voles Microtus agrestis. The study was conducted during the increase and peak phases of a vole population cycle on four agricultural field sites situated 1.5–7.0 km apart. Each field contained two 0.5‐ha fenced enclosures and one 1‐ha unfenced control area. One enclosure per field allowed access by small mustelid predators and the other by avian predators; all enclosures prevented the dispersal of voles. The unfenced control areas allowed access by all predators as well as dispersal by voles. Enclosed vole populations were in a treatment‐wise asynchronous phase before the predator access treatments were applied. The growth rates of all enclosed populations were tightly synchronized during the course of the experiment. Conversely, synchrony both among the unfenced populations and between the fenced and unfenced populations was practically non‐existent. During winter, in the increase phase of the cycle, vole populations in all treatments declined to low densities due to a seasonal effect of winter food depletion. During summer, in the peak year of the vole cycle, all populations fluctuated in synchrony. At this time, both small mustelids and birds of prey appeared to be abundant enough to induce synchrony. Dispersal was identified as a potential contributor to synchronization, but the magnitude of its effects could not be reliably discerned. Our results indicate that no single mechanism can account for the observed patterns of spatial synchrony among cyclic northern vole populations. Rather, spatial synchronization is induced by different mechanisms, namely seasonality and predation, acting successively during different seasons and phases of the vole cycle.  相似文献   

11.
Studies on competing mammalian species in the past have focused mainly on the competitive exclusion of one species from the preferred habitat of the other. Investigations on effects of competition and coexistence on individual fitness are rare . In this study we were able to measure effects of interspecific competition on major fitness components, using a system with two vole species in asymmetric competition. Survival, reproduction and space use of bank vole Clethrionomys glareolus females were monitored in 32 enclosed populations over four replicates of eight parallel run enclosures. Into half of the enclosures we introduced an additional number of field voles Microtus agrestis , a dominant competitor.
Survival of bank vole females was lower under competitive conditions. Total number of breeding females was lower in populations coexisting with competitors. Territory size of bank vole females decreased. Females body weight and litter size bank vole litters conceived during the experiment were not affected by interspecific competition. These characteristics should respond to differences in food resources, and territory size should increase if food was scarce, thus we found no indication of direct exploitation competition between the two species. Space use was overlapping between the species, but individuals of both species were never caught together in the same trap, indicating avoidance behaviour.
We conclude that adult bank vole females do suffer fitness consequences through interference competition with field voles, probably basing on increased number of aggressive encounters in the presence of the dominant species. Our results suggest, that direct interference rather than indirect exploitation competition may be the cause for observed fitness decrease in bank vole females.  相似文献   

12.
布氏田鼠(Lasiopodomys brandtii)是内蒙古典型草原区主要鼠种之一。该鼠种在秋季将食物储存在储草仓内,以此来度过植被贫瘠的冬季。为探究储草期增加食物对布氏田鼠越冬存活率的影响,2004年10月,于内蒙古阿巴嘎旗白音图噶苏木的布氏田鼠鼠害草场随机选取两块100 m×200 m的样地,分别设为增食样地和对照样地。增食样地内给每个布氏田鼠洞群补充食物,每天补充500 g小麦,连续补充2 d共计1000 g。对照样地内则不做任何处理。2004年10月,采用标志重捕法调查两块样地内布氏田鼠种群数量,调查显示,增食样地和对照样地内,布氏田鼠数量分别为310只和318只,以该结果作为计算其越冬存活率的基数。2005年5月,返回样地再次进行标志重捕,分别计算两样地布氏田鼠的越冬存活率。卡方检验显示,储草期增加食物能显著提高布氏田鼠越冬存活率。增食样地布氏田鼠越冬存活率为41.3%,显著高于对照样地布氏田鼠越冬存活率(24.2%,P<0.01)。增食样地雌性和雄性布氏田鼠越冬存活率分别为45.4%和37.3%,均显著高于对照样地雌性和雄性布氏田鼠越冬存活率(25.8%和22.6%,P<0.01)。但样地内雌性和雄性越冬存活率均无明显差异(P>0.05)。本研究结果表明,补充食物可大幅度提升布氏田鼠冬季存活率,增加布氏田鼠越冬存活基数,对来年种群增长起重要作用。  相似文献   

13.
High overwintering mortality was recorded forMeligethes aeneus in the field in Finland, ranging from 85 to 98% depending on the source of the overwintering population. The main factor explaining, variation in survival was the body weight of the beetles in the autumn: only the heaviest beetles survived. Body weight, on the other hand, was influenced by treatment of the rape field soil withBeauveria bassiana, resulting in a 50% decrease in winter survival compared with the reference. The soil treatment did not appear to have direct mortality effects (pathogenesis) on the beetle neither in the summer nor in the winter, and there was no apparent effect on survival of crowding of the insects at the overwintering site. Density dependence in overwintering survival ofM. aeneus may function through the availability of pollen food in the autumn, and intraspecific competition for it. Treatment of the rape field soil withB. bassiana may be a feasible way to increase, the winter mortality and to lower the pollen beetle populations, but requires further research.  相似文献   

14.
In small mammals living in highly seasonal environments, observationalstudies show that female home range size and exclusiveness aresmaller in the nonbreeding winter season than in the breedingsummer season. This has led to the notion that nonbreeding femalesare more social and decrease territorial behavior during winter.However, because territoriality decreases with increasing populationdensity, and density normally increases during the breedingseason, the effects of density and season on social structureare usually confounded. To find out which of the 2 factors explainsspace use, we experimentally established 3 high-density and3 low-density root vole (Microtus oeconomus) populations inlate spring and monitored the populations into the nonbreedingwinter season. Population sizes were controlled throughout thebreeding period to minimize seasonal variation in density. Homerange sizes were larger in founder females than in field-bornfemales but did not change with season or density. Area exclusivelyused by individual females was lower in winter than summer,and founder females decreased exclusiveness as density increased.We argue that this seasonal pattern of space use might be causedby variation in benefits of group living, whereas founder femalesalso responded to density-dependent competition by reducingarea exclusively used.  相似文献   

15.
Understanding the factors that drive species population dynamics is fundamental to biology. Cyclic populations of microtine rodents have been the most intensively studied to date, yet there remains great uncertainty over the mechanisms determining the dynamics of most of these populations. For one such population, we present preliminary evidence for a novel mechanism by which herbivore-induced reductions in plant quality alter herbivore life-history parameters and subsequent population growth. We tested the effect of high silica levels on the population growth and individual performance of voles (Microtus agrestis) reared on their winter food plant (Deschampsia caespitosa). In sites where the vole population density was high, silica levels in D. caespitosa leaves collected several months later were also high and vole populations subsequently declined; in sites where the vole densities were low, levels of silica were low and population density increased. High silica levels in their food reduced vole body mass by 0.5% a day. We argue that silica-based defences in grasses may play a key role in driving vole population cycles.  相似文献   

16.
Fey K  Banks PB  Korpimäki E 《Oecologia》2008,157(3):419-428
Ecosystems of three trophic levels may be bottom-up (by food-plant availability) and/or top-down (by predators) limited. Top-down control might be of greater consequence when the predation impact comes from an alien predator. We conducted a replicated two-factor experiment with field voles (Microtus agrestis) during 2004-2005 on small islands of the outer archipelago of the Baltic Sea, south-west Finland, manipulating both predation impact by introduced American mink (Mustela vison) and winter food supply. In autumn 2004, we live-trapped voles on five islands from which mink had been consistently removed, and on four islands where mink were present, and provided half of these islands with 1.8 kg oats per vole. Body mass of female voles increased as a response to supplementary food, whereas both food supplementation and mink removal increased the body mass of male voles in subsequent spring. During winter, there was a positive effect of supplementary food, but in the subsequent summer, possible positive long-term impacts of food supplementation on field voles were not detected. Mink removal appeared not to affect density estimates of field voles during the winter and summer immediately after food addition. Trapping data from 2004 to 2005 and 2007 suggested, however, that in two out of three summers densities of voles were significantly higher in the absence than in the presence of mink. We conclude that vole populations on small islands in the archipelago of the Baltic Sea are mainly bottom-up limited during winter (outside the growing season of food plants), when food availability is low, and limited by mink predation during summer which slows population growth during the reproductive season of voles.  相似文献   

17.
Cyclic changes in population growth rate are caused by changes in survival and/or reproductive rate. To find out whether cyclic changes in reproduction are an important part of the mechanism causing cyclic fluctuations in small mammal populations, we studied changes in the population structure and reproduction of field voles ( Microtus agrestis ), sibling voles ( M. rossiaemeridionalis ), bank voles ( Clethrionomys glareolus ), and common shrews ( Sorex araneus ) in western Finland during 1984–1992, in an area with 3-yr vole cycles. We also modelled the population growth of voles using parameter values from this study. The animals studied were collected by snap trapping in April, May, June, August, September, and, during 1986–1990, also in October. We found several phase-related differences in the population structure (age structure, sex ratio, proportion of mature individuals) and reproduction (litter size, length of the breeding season) of voles. In non-cyclic common shrews, the only significant phase-related difference was a lower proportion of overwintered individuals in the increase phase. According to the analyses and the vole model, phase-related changes in litter size had only a minor impact on population growth rate. The same was true for winter breeding in the increase phase. The length and intensity of the summer breeding season had an effect on yearly population growth but this impact was relatively weak compared to the effect of cyclic changes in survival. The population increase rates of Microtus were delayed dependent on density (8–12-month time lag). Our results indicate that cyclic changes in reproduction are not an important part of the mechanism driving cyclic fluctuations in vole populations. Low survival of young individuals appeared to play an important role in the shift from the peak to the decline phase in late summer and early autumn.  相似文献   

18.
We used exogenous gonadotropin hormones to physiologically enlarge litter size in the bank vole (Clethrionomys glareolus). This method allowed the study design to include possible production costs of reproduction and a trade-off between offspring number and body size at birth. Furthermore, progeny rearing and survival and postpartum survival of the females took place in outdoor enclosures to capture salient naturalistic effects that might be present during the fall and early winter. The aim of the study was to assess the effects of the manipulation on the growth and survival of the offspring and on the reproductive effort, survival, and future fecundity of the mothers. Mean offspring body size was smaller in enlarged litters compared to control litters at weaning, but the differences disappeared by the winter. Differences in litter sizes disappeared before weaning age due to higher mortality in enlarged litters. In addition to the effects of the litter size, offspring performance was probably also influenced by the ability of the mother to support the litter. Experimental females had higher reproductive effort at birth, and they also tended to have higher mortality during nursing. Combined effects of high reproductive effort at birth and high investment in nursing the litter entailed costs for the experimental females in terms of decreased probability of producing a second litter and a decreased body mass gain. Thus, enlarged litter size had both survival and fecundity costs for the mothers. Our results suggest that the evolution of litter size and reproductive effort is determined by reproductive costs for the mothers as well as by a trade-off between offspring number and quality.  相似文献   

19.
In a previous experiment we have documented that organisms adopt a risk-sensitive reproductive allocation when summer reproductive investment competes with survival in the coming winter ( Bårdsen et al. 2008 ). This tradeoff is present through autumn female body mass, which acts as an insurance against unpredictable winter environmental conditions. We tested this hypothesis experimentally on female reindeer experiencing stable and benign winter feeding conditions. Additional supplementary feeding and removal of newborns represented two sets of experimental manipulations. Females in the supplementary feeding group increased more in winter body mass relative to control females. This manipulation, however, did not have any effect on summer body mass development for neither females nor offspring, but we found a positive effect of feeding on offspring birth mass for smaller females. In contrast, offspring removal did have a positive effect on summer body mass development as females in this group were larger in the autumn relative to control females. In essence, we documented two immediate effects as: (1) supplementary feeding did have a positive effect on spring body mass for smaller females; and (2) offspring removal did increase the female summer somatic growth as this had a positive effect on female autumn body mass. Additionally, we tested for lagged effects, but we could not document any biologically significant effects of neither manipulation in the coming spring. The fact that we only found rather weak effects of both manipulations was as expected for risk sensitive individuals experiencing benign environmental conditions over many years.  相似文献   

20.
Density dependence plays a key role in life-history characteristics and population ecology of large, herbivorous mammals. We designed a manipulative experiment to test hypotheses relating effects of density-dependent mechanisms on physical condition and fecundity of North American elk (Cervus elaphus) by creating populations at low and high density. We hypothesized that if density-dependent effects were manifested principally through intraspecific competition, body condition and fecundity of females would be lower in an area of high population density than in a low-density area. Thus, we collected data on physical condition and rates of pregnancy in each experimental population. Our manipulative experiment indicated that density-dependent feedbacks affected physical condition and reproduction of adult female elk. Age-specific pregnancy rates were lower in the high-density area, although there were no differences in pregnancy of yearlings or in age at peak reproduction between areas. Age-specific rates of pregnancy began to diverge at 2 years of age between the two populations and peaked at 6 years old. Pregnancy rates were most affected by body condition and mass, although successful reproduction the previous year also reduced pregnancy rates during the current year. Our results indicated that while holding effects of winter constant, density-dependent mechanisms had a much greater effect on physical condition and fecundity than density-independent factors (e.g., precipitation and temperature). Moreover, our results demonstrated effects of differing nutrition resulting from population density during summer on body condition and reproduction. Thus, summer is a critical period for accumulation of body stores to buffer animals against winter; more emphasis should be placed on the role of spring and summer nutrition on population regulation in large, northern herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号