首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protozoan parasite Crithidia bombi and its host, the bumblebee Bombus terrestris, are used as a model system for the study of the evolutionary ecology of host-parasite interactions. In order to study these interactions we established a method for in vitro cultivation of single parasite strains. Additionally, a high-throughput method is developed for the determination of cell numbers in cultures by means of optical density (OD) measurements. The protocol for in vitro cultivation allowed for growing different strains on agar plates as well as in culture medium. A calibration curve for the relationship between cell number and OD has been developed. Subsequently, growth rates for different genotypes of C. bombi have been recorded. Significant differences in the growth rates and generation times between these genotypes were demonstrated. As this might be related to the virulence of the parasite, this relationship may be confirmed by in vivo growth rate determination. In comparison with conventional cell counting, the application of OD measurements allows for high-throughput experiments as the time taken to record each sample is reduced by a factor of 30. The in vitro cultivation method allows for controlled infection experiments in order to study host-parasite interactions.  相似文献   

2.
The outcome of defence by the invertebrate immunity has recently been shown to be more complex than previously thought. In particular, the outcome is affected by biotic and abiotic environmental variation, host genotype, parasite genotype and their interaction. Knowledge of conditions under which environmental variation affects the outcome of an infection is one important question that relates to this complexity. We here use the model system of the bumblebee, Bombus terrestris, infected by the trypanosome, Crithidia bombi, combined with a split-colony design to test the influence of the parasite environment during larval rearing on adult resistance. We find that genotype-specific interactions are maintained and adult resistance is not influenced. This demonstrates that environmental dependence of bumblebee-trypanosome interactions is not ubiquitous, and yet unknown constraints will maintain standard coevolutionary dynamics under such environmental deviations.  相似文献   

3.
A potential consequence of host-parasite coevolution in spatially structured populations is parasite local adaptation: local parasites perform better than foreign parasites on their local host populations. It has been suggested that the generally shorter generation times of parasites compared with their hosts contributes to parasites, rather than hosts, being locally adapted. We tested the hypothesis that relative generation times of hosts and parasites affect local adaptation of hosts and parasites, using the bacterium Pseudomonas fluorescens and a lytic phage as host and parasite, respectively. Generation times were not directly manipulated, but instead one of the coevolving partners was regularly removed and replaced with a population from an earlier time point. Thus, one partner underwent more generations than the other. Manipulations were carried out at both early and later periods of coevolutionary interactions. At early stages of coevolution, host and parasites that underwent relatively more generations displayed higher levels of resistance and infectivity, respectively. However, the relative number of generations that bacteria and phages underwent did not change the level of local adaptation relative to control populations. This is likely because generalist hosts and parasites are favoured during early stages of coevolution, preventing local adaptation. By contrast, at later stages manipulations had no effect on either average levels of resistance or infectivity, or alter the level of local adaptation relative to the controls, possibly because traits other than resistance and infectivity were under strong selection. Taken together, these data suggest that the relative generation times of hosts and parasites may not be an important determinant of local adaptation in this system.  相似文献   

4.
Characterisation of microsporidian species and differentiation among genetic variants of the same species has typically relied on ribosomal RNA (rRNA) gene sequences. We characterised the entire rRNA gene of a microsporidium from 11 isolates representing eight different European bumblebee (Bombus) species. We demonstrate that the microsporidium Nosema bombi infected all hosts that originated from a wide geographic area. A total of 16 variable sites (all single nucleotid polymorphisms (SNPs)) was detected in the small subunit (SSU) rRNA gene and 42 (39 SNPs and 3 indels) in the large subunit (LSU) rRNA sequence. Direct sequencing of PCR-amplified DNA products of the internal transcribed spacer (ITS) region revealed identical sequences in all isolates. In contrast, ITS fragment length determined by PAGE and sequencing of cloned amplicons gave better resolution of sequences and revealed multiple SNPs across isolates and two fragment sizes in each isolate (six short and seven long amplicon variants). Genetic variants were not unique to individual host species. Moreover, two or more sequence variants were obtained from individual bumblebee hosts, suggesting the existence of multiple, variable copies of rRNA in the same microsporidium, and contrary to that expected for a class of multi-gene family under concerted evolution theory. Our data on within-genome rRNA variability call into question the usefulness of rRNA sequences to characterise intraspecific genetic variants in the Microsporidia and other groups of unicellular organisms.  相似文献   

5.
Bitterling fishes deposit their eggs on the gills of living mussels using a long ovipositor. We examined whether ovipositor length (OL) and egg shape correlated with differences in host mussel species in the family Unionidae among populations of the tabira bitterling (Acheilognathus tabira) in Japan. Bitterling populations that use mussels in the sub-family Anodontinae possessed longer ovipositors and more elongated eggs than those using mussels of Unioninae, as expected from the difference in host size between the sub-families (anodontine mussels are larger than unionine mussels). Based on a robust phylogeny of A. tabira populations, we demonstrated that the evolution of both OL and egg shape were correlated with host differences, but not with each other, suggesting that these traits have been selected for independently. Our study demonstrates how adaptive traits for brood parasitism may diverge with host shift due to different host availability and/or interspecific competition for hosts.  相似文献   

6.
Whether or not organisms become infected by parasites is likely to be a complex interplay between host and parasite genotypes, as well as the physiological condition of both species. Details of this interplay are very important because physiology‐driven susceptibility has the potential to confound genetic coevolutionary responses. Here we concentrate on how physiological aspects of infection may interfere with genetic‐based infectivity in a snail–trematode (Potamopyrgus antipodarum/Microphallus sp.) interaction by asking: (1) how does host condition affect susceptibility to infection? and (2) how does host condition affect the survival of infected individuals? We manipulated host condition by experimentally varying resources. Contrary to our expectation, host condition did not affect susceptibility to infection, suggesting that genetics are more important than physiology in this regard. However, hosts in poor condition had higher parasite‐induced mortality than hosts in good condition. Taken together, these results suggest that coevolutionary interactions with parasites may depend on host condition, not by altering susceptibility, but rather by affecting the likelihood of parasite transmission.  相似文献   

7.
To examine putative specialization of a hemiparasitic plant to the most beneficial host species, we studied genetic variation in performance and trade-offs between performance on different host species in the generalist hemiparasite, Rhinanthus serotinus. We grew 25 maternal half-sib families of the parasite on Agrostis capillaris and Trifolium pratense and without a host in a greenhouse. Biomass and number of flowers of the parasite were the highest when grown on T. pratense. There were significant interactions between host species and R. serotinus seed-family indicating that the differences in performance on the two hosts and without a host varied among the families. However, we found no significant negative correlations between performance of R. serotinus on the host species or between performance on the two hosts and autotrophic performance. Thus, the genetic factors studied here are not likely to affect the evolution of specialization of R. serotinus to the most beneficial host.  相似文献   

8.
Genetic diversity and spatial structure of populations are important for antagonistic coevolution. We investigated genetic variation and population structure of three closely related European ant species: the social parasite Harpagoxenus sublaevis and its two host species Leptothorax acervorum and Leptothorax muscorum. We sampled populations in 12 countries and analysed eight microsatellite loci and an mtDNA sequence. We found high levels of genetic variation in all three species, only slightly less variation in the host L. muscorum. Using a newly introduced measure of differentiation (Jost’s Dest ), we detected strong population structuring in all species and less male‐biased dispersal than previously thought. We found no phylogeographic patterns that could give information on post‐glacial colonization routes – northern populations are as variable as more southern populations. We conclude that conditions for Thompson’s geographic mosaic of coevolution are ideal in this system: all three species show ample genetic variation and strong population structure.  相似文献   

9.
Synopsis The seasonal transmission ofRaphidascaris acus was studied in two small lakes on Manitoulin Island, Ontario. Dragonfly nymphs and caddisfly larvae, acting as paratenic hosts, contained second-stage larvae. Several fishes, including percids and cyprinids, were intermediate hosts with second, third, and fourth-stage larvae in the liver. Yellow perch,Perca flavescens, was the most important of these. Intensities were up to 928 and increased with length and age of the perch; prevalence was 100%. Abundance ofR. acus tended to be higher in females but was not related to condition of the perch. Second-stage larvae were acquired from invertebrates in summer and developed to the fourth stage by November. They became surrounded by fibrous capsules during the next summer but remained alive for at least another year. The longevity of larvae in the intermediate host may ensure survival of the parasite through periods of low host abundance after winterkill. Northern pike,Esox lucius, was the definitive host. Abundance ofR. acus tended to be greater in larger pike but was not related to sex or condition of the fish. The parasite was acquired in late fall. Prevalence was 100% and mean intensities were over 200 in winter and spring, declining to 64–100% and less than 15, respectively, in summer. Mature worms were present from early spring through summer. Seasonality of infection in the definitive host is not attributable to seasonal availability of larvae in perch. Instead it may be controlled by timing of predation on perch and rate of development and longevity of the parasite. Transmission to pike apparently continues in summer. Low intensity may result from low recruitment rate and rapid turnover of the parasite population.  相似文献   

10.
Organisms with wide geographical or phenotypic diversity often constitute assemblages of genetically distinct species or lineages. Within parasites, an emergence of host-specific lineages is assumed to create such cryptic variability; however, empirical evaluation of these processes is scarce. Here, we analyse populations of a parasite with a complex life cycle, wide host spectrum and global distribution, with the aim to reveal factors underlying the evolution of host- or geography-dependent lineages. Using 15 microsatellite loci, deep genetic distances were observed between populations from distant geographical areas. On the local scale, host-mediated genetic structure was found among sympatric samples. Two lineages differing in the spectrum of infected hosts co-occurred in the Euro-Mediterranean area, and two distinct lineages were recovered from Lake Tana in Ethiopia. Although sampled across several host taxa and multiple localities, a lack of marked genetic structure was seen in the populations belonging to one of the European lineages. Only weak genetic differentiation between sympatric samples from two host species was found. Complexity of the parasite life-cycle contributed to such a stratified pattern. Differences in the immune response between fish hosts were suggested as the factor diversifying the populations locally; conversely, high mobility of the parasite due to migration with its bird (definitive) host were assessed to homogenize populations across the area of distribution. However, despite the high mobility, large bodies of salt water prevent the parasite from long-distance migrations, as was demonstrated in an example of the Mediterranean Sea which represented an effective barrier to gene flow.  相似文献   

11.
Explicit understanding of the spatial scale of evolutionary processes is required in order to set targets for their effective conservation. Here, we explore the spatial context of neutral and adaptive divergence in the species-rich Knersvlakte region of South Africa. Specifically, we aimed to assess the importance of erosional drainage basins as spatial units of evolutionary process. We used amplified fragment length polymorphism (AFLP) and reciprocal transplants to investigate genetic differentiation in Argyroderma pearsonii, sampled from sparse and dense quartz habitats within each of three drainage basins. This design allowed assessment of differentiation at two distinct spatial scales; between habitats within basins, and between basins. We found near-perfect concordance between genetic clusters and basin occupancy, suggesting restricted interbasin gene flow. In addition, transplants reveal adaptive divergence between basins on the dense quartz habitat. We have shown that neutral and adaptive differentiation occurs between basins, but not between habitats within basins, suggesting that conservation plans aimed at conserving multiple interconnected drainage basins will capture an important axis of evolutionary process on the Knersvlakte.  相似文献   

12.
Vasconcellea species, often referred to as highland papayas, consist of a group of fruit species that are closely related to the common papaya (Carica papaya). The genus deserves special attention as a number of species show potential as raw material in the tropical fruit industry, fresh or in processed products, or as genetic resources in papaya breeding programs. Some species show a very restricted distribution and are included in the IUCN Red List. This study on Vasconcellea distribution and diversity compiled collection data from five Vasconcellea projects and retrieved data from 62 herbaria, resulting in a total of 1,553 georeferenced collection sites, in 16 countries, including all 21 currently known Vasconcellea species. Spatial analysis of species richness clearly shows that Ecuador, Colombia and Peru are areas of high Vasconcellea diversity. Combination of species occurrence data with climatic data delimitates the potential distribution of each species and allows the modeling of potential richness at continent level. Based on these modeled richness maps, Ecuador appears to be the country with the highest potential Vasconcellea diversity. Despite differences in sampling densities, its neighboring countries, Peru and Colombia, possess high modeled species richness as well. A combination of observed richness maps and modeled potential richness maps makes it possible to identify important collection gaps. A Principal Component Analysis (PCA) of climate data at the collection sites allows us to define climatic preferences and adaptability of the different Vasconcellea species and to compare them with those of the common papaya.  相似文献   

13.
Habitat fragmentation can lead to a decline of genetic diversity, a potential risk for the survival of natural populations. Fragmented populations can become highly differentiated due to reduced gene flow and genetic drift. A decline in number of individuals can result in lower reproductive fitness due to inbreeding effects. We investigated genetic variation within and between 11 populations of the rare and endangered plant Silene chlorantha in northeastern Germany to support conservation strategies. Genetic diversity was evaluated using AFLP techniques and the results were correlated to fitness traits. Fitness evaluation in nature and in a common garden approach was conducted. Our analysis revealed population differentiation was high and within population genetic diversity was intermediate. A clear population structure was supported by a Bayesian approach, AMOVA and neighbour-joining analysis. No correlation between genetic and geographic distance was found. Our results indicate that patterns of population differentiation were mainly caused by temporal and/or spatial isolation and genetic drift. The fitness evaluation revealed that pollinator limitation and habitat quality seem, at present, to be more important to reproductive fitness than genetic diversity by itself. Populations of S. chlorantha with low genetic diversity have the potential to increase in individual number if habitat conditions improve. This was detected in a single large population in the investigation area, which was formerly affected by bottleneck effects.  相似文献   

14.
Elevated risk of disease transmission is considered a major cost of sociality, although empirical evidence supporting this idea remains scant. Variation in spatial cohesion and the occurrence of social interactions may have profound implications for patterns of interindividual parasite transmission. We used a social network approach to shed light on the importance of different aspects of group-living (i.e. within-group associations versus physical contact) on patterns of parasitism in a neotropical primate, the brown spider monkey (Ateles hybridus), which exhibits a high degree of fission–fusion subgrouping. We used daily subgroup composition records to create a ‘proximity’ network, and built a separate ‘contact’ network using social interactions involving physical contact. In the proximity network, connectivity between individuals was homogeneous, whereas the contact network highlighted high between-individual variation in the extent to which animals had physical contact with others, which correlated with an individual''s age and sex. The gastrointestinal parasite species richness of highly connected individuals was greater than that of less connected individuals in the contact network, but not in the proximity network. Our findings suggest that among brown spider monkeys, physical contact impacts the spread of several common parasites and supports the idea that pathogen transmission is one cost associated with social contact.  相似文献   

15.
采用SSR标记技术对42个荷花品种( Nelumbo spp.)的基因组DNA进行扩增,在此基础上,对供试品种进行UPGMA聚类分析、群体结构分析和主坐标分析( PCoA)。结果表明:采用17对SSR引物从42个荷花品种的基因组DNA中扩增出77个位点,多态性位点百分率为88.31%;每对引物可扩增出1~9个多态性位点。根据Nei's遗传距离,供试的42个荷花品种可被分成Ⅰ和Ⅱ两组,分别包含3和39个品种;在Nei's遗传距离0.150处,Ⅱ组被进一步分成Ⅱa、Ⅱb和Ⅱc 3个亚组,分别包含3、16和20个品种。群体结构分析结果表明:组分概率高于等于0.80时,供试的42个荷花品种被分成Pop1、Pop2和混合群3个亚群,分别包含17、16和9个品种。 PCoA分析结果表明:在F1水平上,供试的42个荷花品种被分成2个部分;其中,Pop1亚群的品种均分布在第二和第三象限,而Pop2亚群的品种则分布在第一和第四象限。总体来看,聚类分析、群体结构分析和PCoA分析的结果基本一致。综合分析结果表明:玉组包含美洲黄莲( N. lutea Pers.)品种‘艾江南',且与传统中国莲( N. nucifera Gaertn.)品种的亲缘关系最远,故认为该组为美洲黄莲;Ⅱ组为中国莲,其中,Ⅱc亚组以传统中国莲品种为主,而Ⅱb亚组则偏重于美洲黄莲。总体上看,供试的42个荷花品种主要被分为中国莲和美洲黄莲两组,而中美杂交莲并没有独立成组,其成因有待进一步研究。  相似文献   

16.
Population genetic perturbations of intermediate hosts, often a consequence of human pressure on environmental resources, can precipitate unexpectedly severe disease outbreaks. Such disturbances are set to become increasingly common following range changes concomitant with climate shifts, dwindling natural resources and major infrastructure changes such as hydroprojects. Construction of the Diama dam in the Senegal River Basin (SRB) reduced river salinity, enabling the freshwater snail intermediate host Biomphalaria pfeifferi to rapidly expand its distribution. A serious public health problem ensued, with an epidemic of intestinal schistosomiasis occurring in the previously schistosome‐free Richard‐Toll region within 2 years. The current study aimed to assess the population variability of B. pfeifferi in the SRB, and speculate upon its subsequent impact on host‐parasite interactions following such engineered ecological change. Genetic variation at nine polymorphic microsatellite loci revealed little population differentiation in SRB snails compared with those from natural habitats in Zimbabwe, where Schistosoma mansoni transmission is much lower. ‘Open’ SRB habitats are associated with greater water contact, smaller population sizes and less genetic diversity, with sites downstream of Richard‐Toll showing greater inter‐ and intrapopulation variation, concomitant with less frequent human contact. These observations may be explained by rapid expansion into pristine habitat selecting for high fecundity genotypes at the expense of schistosome resistance, presenting S. mansoni with genetically homogenous highly fecund susceptible populations around the focal point, promoting development of a highly compatible host‐parasite relationship. Longitudinal study of such systems may prove important in predicting public health risks engendered by future environmental engineering projects.  相似文献   

17.
Sex-biased dispersal is often connected to the mating behaviour of the species. Even if patterns of natal dispersal are reasonably well documented for monogamous birds, only a few data are available for polygynous and especially lekking species. We investigated the dispersal of the capercaillie (Tetrao urogallus) by examining sex-specific gene flow among the leks. Genetic information was extracted using nuclear and mitochondrial molecular markers for sexed faecal samples and analysed by novel Bayesian statistical methods. Contrary to the traditional view that the males are highly philopatric and female is the dispersing sex, we found roughly equivalent gross and effective dispersal of the sexes. The level of polygamy has a strong influence on the effective population size and on the effective dispersal. The results do not support the theories that dispersal evolves solely as a result of resource competition or other advantages to males obtained through kin selection in lekking species.  相似文献   

18.
Vardo AM  Schall JJ 《Molecular ecology》2007,16(13):2712-2720
Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, a lizard malaria parasite at a study region in northern California, using variable microsatellite markers, the first such study for any malaria parasite of lizards or birds (the most common hosts for Plasmodium species). Multiclonal infections are common (50-88% of infections among samples), and measures of genetic diversity for the metapopulation (expected heterozygosity, number of alleles per locus, allele length variation, and effective population size) all indicated a substantial overall genetic diversity. Comparing years with high prevalence (1996-1998 = 25-32% lizards infected), and years with low prevalence (2001-2005 = 6-12%) found fewer alleles in samples taken from the low-prevalence years, but no reduction in overall diversity (H = 0.64-0.90 among loci). In most cases, rare alleles appeared to be lost as prevalence declined. For sites chronically experiencing low transmission intensity (prevalence approximately 1%), overall diversity was also high (H = 0.79-0.91), but there were fewer multiclonal infections. Theory predicts an apparent excess in expected heterozygosity follows a genetic bottleneck. Evidence for such a distortion in genetic diversity was observed after the drop in parasite prevalence under the infinite alleles mutation model but not for the stepwise mutation model. The results are similar to those reported for the human malaria parasite, Plasmodium falciparum, worldwide, and support the conclusion that malaria parasites maintain high genetic diversity in host populations despite the potential for loss in alleles during the transmission cycle or during periods/locations when transmission intensity is low.  相似文献   

19.
The biology and host specificity of Mecinus janthinus Germar, an oligophagous, univoltine stem‐borer of Linaria spp. are discussed. The results of feeding and oviposition tests with 38 species in 13 families and of larval transfer tests with four plant species are presented. They show that M. janthinus is restricted to the genus Linaria and does not develop on snapdragon Antirrhinum majus, an important ornamental in North America. The weevil is widely distributed in Europe. It accepts and develops normally on plants from the target North American toadflax populations. Therefore, it should be relatively easy to establish M. janthinus where the control of L. dalmatica and L. vulgaris is required. The release of M. janthinus in Canada and the USA is recommended.  相似文献   

20.
Tricholoma matsutake (matsutake) is an ectomycorrhizal (ECM) fungus that produces economically important mushrooms in Japan. Here, we use microsatellite markers to identify genets of matsutake sporocarps and below-ground ECM tips, as well as associated host genotypes of Pinus densiflora. We also studied ECM fungal community structure inside, beneath and outside the matsutake fairy rings, using morphological and internal transcribed spacer (ITS) polymorphism analysis. Based on sporocarp samples, one to four genets were found within each fairy ring, and no genetic differentiation among six sites was detected. Matsutake ECM tips were only found beneath fairy rings and corresponded with the genotypes of the above-ground sporocarps. We detected nine below-ground matsutake genets, all of which colonized multiple pine trees (three to seven trees per genet). The ECM fungal community beneath fairy rings was species-poor and significantly differed from those inside and outside the fairy rings. We conclude that matsutake genets occasionally establish from basidiospores and expand on the root systems of multiple host trees. Although matsutake mycelia suppress other ECM fungi during expansion, most of them may recover after the passage of the fairy rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号