共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined the amount and temporal stability of genetic differentiation among brook cham sampled from five rivers on Cape Race, Newfoundland, with an electrophoretic analysis of 42 protein coding loci. Fish from four of these rivers were analysed for restriction fragment length polymorphisms in mitochondrial DNA (mtDNA). A single mtDNA clone was observed in all rivers sampled, except one, where 47% offish were from a different and relatively divergent clone (0.31 % sequence divergence). In contrast, Cape Race brook charr show large amounts of genetic differentiation at six enzyme coding loci; Nei's genetic distance ranged between 0,020 and 0.048. This differentiation is relatively stable as no significant differences in allele frequencies were detected between fish sampled from two rivers over two consecutive years. The most divergent population based on protein polymorphism is not that with two mtDNA clonal lineages. In contrast to the commonly held view, mtDNA analyses do not necessarily provide greater resolution of population structure than allozyme analyses. 相似文献
2.
Linear and heterogeneous habitat makes headwater stream networks an ideal ecosystem in which to test the influence of environmental factors on spatial genetic patterns of obligatory aquatic species. We investigated fine-scale population structure and influence of stream habitat on individual-level genetic differentiation in brook trout (Salvelinus fontinalis) by genotyping eight microsatellite loci in 740 individuals in two headwater channel networks (7.7 and 4.4 km) in Connecticut, USA. A weak but statistically significant isolation-by-distance pattern was common in both sites. In the field, many tagged individuals were recaptured in the same 50-m reaches within a single field season (summer to fall). One study site was characterized with a hierarchical population structure, where seasonal barriers (natural falls of 1.5-2.5 m in height during summer base-flow condition) greatly reduced gene flow and perceptible spatial patterns emerged because of the presence of tributaries, each with a group of genetically distinguishable individuals. Genetic differentiation increased when pairs of individuals were separated by high stream gradient (steep channel slope) or warm stream temperature in this site, although the evidence of their influence was equivocal. In a second site, evidence for genetic clusters was weak at best, but genetic differentiation between individuals was positively correlated with number of tributary confluences. We concluded that the population-level movement of brook trout was limited in the study headwater stream networks, resulting in the fine-scale population structure (genetic clusters and clines) even at distances of a few kilometres, and gene flow was mitigated by 'riverscape' variables, particularly by physical barriers, waterway distance (i.e. isolation-by-distance) and the presence of tributaries. 相似文献
3.
Electrophoretic variation is described for malic enzyme (ME) for the first time in brook trout (Salvelinus fontinalis). Since the quaternary structure of ME was not clear from examination of banding patterns in brook trout alone, ME phenotypes in rainbow trout (Salmo gairdneri) × brook trout hybrids as well as in esocid species demonstrated that ME is tetrameric. A model of two duplicated loci is proposed to account for the observed variation. One locus (ME-2) is fixed and one locus (ME-1) is variable with three electrophoretically distinct alleles; the protein products of ME-1 are reduced in activity relative to the protein products of ME-2. Joint segregation was examined between ME-1 and ten other biochemical loci in brook trout, and between ME-1, ME-2, and nine other biochemical loci in a splake—lake trout (Salvelinus namaycush) × brook trout hybrid—backcross. All pairwise examinations showed random assortment except ME-2 with an isocitrate dehydrogenase locus (IDH-3), which showed complete linkage in the splake backcross. This may be due to a chromosomal aberration.Authorized for publication as Paper No. 5599 in the Journal Series of The Pennsylvania Agricultural Experiment Station, University Park, Pennsylvania, in cooperation with the Benner Spring Fish Research Station, The Pennsylvania Fish Commission, Bellefonte, Pennsylvania. M.S. was supported by an NSF Graduate Fellowship. 相似文献
4.
Supportive breeding and stocking performed with non‐native or domesticated fish to support sport fishery industry is a common practice throughout the world. Such practices are likely to modify the genetic integrity of natural populations depending on the extent of genetic differences between domesticated and wild fish and on the intensity of stocking. The purpose of this study is to assess the effects of variable stocking intensities on patterns of genetic diversity and population differentiation among nearly 2000 brook charr (Salvelinus fontinalis) from 24 lakes located in two wildlife reserves in Québec, Canada. Our results indicated that the level of genetic diversity was increased in more intensively stocked lakes, mainly due to the introduction of new alleles of domestic origin. As a consequence, the population genetic structure was strongly homogenized by intense stocking. Heavily stocked lakes presented higher admixture levels and lower levels of among lakes genetic differentiation than moderately and un‐stocked lakes. Moreover, the number of stocking events explained the observed pattern of population genetic structure as much as hydrographical connections among lakes in each reserve. We discuss the implications for the conservation of exploited fish populations and the management of stocking practices. 相似文献
5.
1. Logging can strongly affect stream macroinvertebrate communities, but the direction and magnitude of these effects and their implications for trout abundance are frequently region‐specific and difficult to predict. 2. In first‐order streams in northern New England (U.S.A.) representing a chronosequence of logging history (<2 to >80 years since logging), we measured riparian forest conditions, stream macroinvertebrate community characteristics and brook trout (Salvelinus fontinalis) abundance. Principal component analysis was used to collapse forest data into two independent variables representing variation in logging history, riparian forest structure and canopy cover. We used these data to test whether logging history and associated forest conditions were significant predictors of macroinvertebrate abundance and functional feeding group composition, and whether brook trout abundance was related to logging‐associated variation in invertebrate communities. 3. Catchments with high PC1 scores (recently logged, high‐density stands with low mean tree diameter) and low PC2 scores (low canopy cover) had significantly higher total macroinvertebrate abundance, particularly with respect to chironomid larvae (low PC2 scores) and invertebrates in the grazer functional feeding group (high PC1 scores). In contrast, proportional representation of macroinvertebrates in the shredder functional feeding group increased with time since logging and canopy cover (high PC2 scores). Brook trout density and biomass was significantly greater in young, recently logged stands (high PC1 scores) and was positively related to overall macroinvertebrate abundance. In addition, three variables – trout density, invertebrate abundance and shredder abundance – successfully discriminated between streams that were less‐impacted versus more‐impacted by forestry. 4. These results indicate that timber harvest in northern New England headwater streams may shift shredder‐dominated macroinvertebrate communities supporting low trout abundance to a grazer/chironomid‐dominated macroinvertebrate community supporting higher trout abundance. However, while local effects on brook trout abundance may be positive, these benefits may be outweighed by negative effects of brook trout on co‐occurring species, as well as impairment of habitat quality downstream. Research testing the generality of these patterns will improve understanding of how aquatic ecosystems respond to anthropogenic and natural trajectories of forest change. 相似文献
6.
A common dimorphism in life-history tactic in salmonids is the presence of an anadromous pathway involving a migration to sea followed by a freshwater reproduction, along with an entirely freshwater resident tactic. Although common, the genetic and environmental influence on the adoption of a particular life-history tactic has rarely been studied under natural conditions. Here, we used sibship-reconstruction based on microsatellite data and an 'animal model' approach to estimate the additive genetic basis of the life-history tactic adopted (anadromy vs. residency) in a natural population of brook charr, Salvelinus fontinalis. We also assess its genetic correlation with phenotypic correlated traits, body size and body shape. Significant heritability was observed for life-history tactic (varying from 0.52 to 0.56 depending on the pedigree scenario adopted) as well as for body size (from 0.44 to 0.50). There was also a significant genetic correlation between these two traits, whereby anadromous fish were genetically associated with bigger size at age 1 (r(G) = -0.52 and -0.61). Our findings thus indicate that life-history tactics in this population have the potential to evolve in response to selection acting on the tactic itself or indirectly via selection on body size. This study is one of the very few to have successfully used sibship-reconstruction to estimate quantitative genetic parameters under wild conditions. 相似文献
7.
Population regulation of brook trout (Salvelinus fontinalis) in Hunt Creek,Michigan: a 50‐year study
GARY D. GROSSMAN ANDREW NUHFER TROY ZORN GARY SUNDIN GAYLORD ALEXANDER 《Freshwater Biology》2012,57(7):1434-1448
1. Fisheries models generally are based on the concept that strong density dependence exists in fish populations. Nonetheless, there are few examples of long‐term density dependence in fish populations. 2. Using an information theoretical approach (AIC) with regression analyses, we examined the explanatory power of density dependence, flow and water temperature on the per capita rate of change and growth (annual mean total length) for the whole population, adults, 1+ and young‐of‐the‐year (YOY) brook trout (Salvelinus fontinalis) in Hunt Creek, Michigan, USA, between 1951 and 2001. This time series represents one of the longest quantitative population data sets for fishes. 3. Our analysis included four data sets: (i) Pooled (1951–2001), (ii) Fished (1951–65), (iii) Unfished (1966–2001) and (iv) Temperature (1982–2001). 4. Principle component analyses of winter flow data identified a gradient between years with high mean daily winter flows, high daily maximum and minimum flows and frequent high flow events, and years with an opposite set of flow characteristics. Flows were lower during the Fished Period than during the Unfished Period. Winter temperature analyses elucidated a gradient between warm mean, warm minimum and maximum daily stream temperatures and a high number of minimum daily temperatures >6.1 °C, and years with the opposite characteristics. Summer temperature analyses contrasted years with warm summer stream temperatures vs years with cool summer stream temperatures. 5. Both YOY and adult densities varied several‐fold during the study. Regression analysis did not detect a significant linear or nonlinear stock–recruitment relationship. AIC analysis indicated that density dependence was present in 15 of 16 cases (four population segments × four data sets) for both per capita rate of increase (wi values 0.46–1.00) and growth data (wi values 0.28–0.99). The almost ubiquitous presence of density dependence in both population and growth data is concordant with results from other trout populations and other studies in Michigan. 相似文献
8.
M. Rossetto R. W. Slade P. R. Baverstock R. J. Henry & L. S. Lee 《Molecular ecology》1999,8(4):633-643
Analysis of five microsatellite loci in 500 Melaleuca alternifolia individuals produced 98 alleles that were useful for population genetic studies. Considerable levels of observed heterozygosity were recorded (HO = 0.724), with approximately 90% of the variability being detected within populations. A low level of selfing (14%) was suggested to be the principal cause of excess homozygosity in a number of populations (overall FIS = 0.073). This study showed low levels of inbreeding in certain populations as well as a significant isolation-by-distance model. Only two groups of populations (Queensland and New South Wales) constituted different genetic provenances as a result of geographical isolation. The M. alternifolia data suggest that microsatellite loci did not always arise by a stepwise mutation process but that larger jumps in allele size may be involved in their evolution. 相似文献
9.
L. W. ANDERSEN E. W. BORN I. GJERTZ Ø. WIIG L.-E. HOLM & C. BENDIXEN 《Molecular ecology》1998,7(10):1323-1336
The population structure of the Atlantic walrus, Odobenus rosmarus rosmarus , was studied using 11 polymorphic microsatellites and restriction fragment length polymorphism detected in the NADH-dehydrogenase ND1, ND2 and ND3/4 segments in mtDNA. A total of 105 walrus samples were analysed from northwest (NW) Greenland, east (E) Greenland, Svalbard and Franz Joseph Land. Two of the 10 haplotypes detected in the four samples were diagnostic for the NW Greenland sample, which implied that the group of walruses in this area is evolutionary distinct from walruses in the other three areas. One individual sampled in E Greenland exhibited a Pacific haplotype, which proved a connection between the Pacific walrus and walruses in eastern Greenland. The Franz Joseph Land, Svalbard and E Greenland samples shared the most common haplotype, indicating very little differentiation at the mtDNA level. Gene flow ( Nm ) estimates among the four areas indicated a very restricted exchange of female genes between NW Greenland and the more eastern Atlantic Arctic samples, and a closer relationship between the three samples composing the eastern Atlantic Arctic. The genetic variation at 11 polymorphic microsatellite loci grouped individuals into three populations, NW Greenland, E Greenland and a common Franz Joseph Land–Svalbard population, which were connected by moderate gene flow. 相似文献
10.
Population genetic structure of the lemon shark (Negaprion brevirostris) in the western Atlantic: DNA microsatellite variation 总被引:2,自引:0,他引:2
DNA microsatellite markers were used to characterize the population genetic structure of the lemon shark, Negaprion brevirostris, in the western Atlantic. This study demonstrates for the first time the usefulness of microsatellites to study population genetic structure and mating systems in the Chondricthyes. Lemon sharks (mostly juveniles) were sampled non-destructively from four locations, Gullivan Bay and Marquesas Key in Florida, Bimini, Bahamas, and Atol das Rocas, Brazil. At least 545 individuals were genotyped at each of four dinucleotide loci. The number of alleles per locus ranged from 19 to 43, and expected heterozygosities ranged from 0.69 to 0.90. Relatively little genetic structure was found in the western Atlantic, with small but significant values for estimators of F(ST) and R(ST) among populations, theta (0.016) and rho (0.026), respectively. No sharp discontinuities were found between the Caribbean sites and Brazil, and most alleles were found at all four sites, indicating that gene flow occurs throughout the western Atlantic with no evidence for distinct stocks. 相似文献
11.
Microsatellite analysis of genetic population structure in an endangered salmonid: the coastal cutthroat trout (Oncorhynchus clarki clarki) 总被引:1,自引:0,他引:1
The genetic population structure of coastal cutthroat trout ( Oncorhynchus clarki clarki ) in Washington state was investigated by analysis of variation in allele frequencies at six highly polymorphic microsatellite loci for 13 anadromous populations, along with one outgroup population from the Yellowstone subspecies ( O. clarki bouvieri) (mean heterozygosity = 67%; average number of alleles per locus = 24). Tests for genetic differentiation revealed highly significant differences in genotypic frequencies for pairwise comparisons between all populations within geographical regions and overall population subdivision was substantial ( F ST = 0.121, R ST = 0.093), with 44.6% and 55.4% of the among-population diversity being attributable to differences between streams ( F SR = 0.054) and between regions ( F RT = 0.067), respectively. Analysis of genetic distances and geographical distances did not support a simple model of isolation by distance for these populations. With one exception, neighbour-joining dendrograms from the Cavalli-Sforza and Edwards' chord distances and maximum likelihood algorithms clustered populations by physiogeographic region, although overall bootstrap support was relatively low (53%). Our results suggest that coastal cutthroat trout populations are ultimately structured genetically at the level of individual streams. It appears that the dynamic balance between gene flow and genetic drift in the subspecies favours a high degree of genetic differentiation and population subdivision with the simultaneous maintenance of high heterozygosity levels within local populations. Results are discussed in terms of coastal cutthroat trout ecology along with implications for the designation of evolutionarily significant units pursuant to the US Endangered Species Act of 1973 and analogous conservation units. 相似文献
12.
Nusha Keyghobadi Katherine P. Unger Jason D. Weintraub Dina M. Fonseca 《Conservation Genetics》2006,7(2):309-313
The Regal Fritillary butterfly, Speyeria idalia (Drury) (Lepidoptera: Nymphalidae), has been described as a high gene flow species. Supporting this assertion, previous studies in the Great Plains, where it is still relatively widespread, have found evidence of gene flow across hundreds of kilometers. Using mitochondrial and microsatellite loci, we examined the spatial genetic structure of a very isolated Pennsylvania population of these butterflies that occupies three separate meadows located within ten kilometers of each other. We found restricted gene flow and a distinct structure, with each meadow having a unique genetic signature. Our findings indicate that even a species that normally exhibits high gene flow may show fine-scale genetic subdivision in areas where populations have been largely extirpated.Authors contributed equally. 相似文献
13.
Aketarawong N Bonizzoni M Thanaphum S Gomulski LM Gasperi G Malacrida AR Gugliemino CR 《Molecular ecology》2007,16(17):3522-3532
The phytophagous insects of the Tephritidae family offer different case histories of successful invasions. An example is Bactrocera dorsalis sensu stricto, the oriental fruit fly which has been recognized as a key pest of Asia and the Pacific. It is known to have the potential to establish adventive populations in various tropical and subtropical areas. Despite the economic risk associated with a putative stable presence of this fly, the genetic aspects of its invasion process have remained relatively unexplored. Using microsatellite markers we have investigated the population structure and genetic variability in 14 geographical populations across the four areas of the actual species range: Far East Asia, South Asia, Southeast Asia and the Pacific Area. Results of clustering and admixture, associated with phylogenetic and migration analyses, were used to evaluate the changes in population genetic structure that this species underwent during its invasion process and establishment in the different areas. The colonization process of this fly is associated with a relatively stable population demographic structure, especially in an unfragmented habitat, rich in intensive cultivation such as in Southeast Asia. In this area, the results suggest a lively demographic history, characterized by evolutionary recent demographic expansions and no recent bottlenecks. Cases of genetic isolation attributable to geographical factors, fragmented habitats and/or fruit trade restrictions were observed in Bangladesh, Myanmar and Hawaii. Regarding the pattern of invasion, the overall genetic profile of the considered populations suggests a western orientated migration route from China to the West. 相似文献
14.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake. 相似文献
15.
Microgeographic genetic structure and gene flow in Hibiscus moscheutos (Malvaceae) populations 总被引:1,自引:0,他引:1
Microgeographic genetic variation in populations of a wetland macrophyte, Hibiscus moscheutos L. (Malvaceae), was investigated using allozyme polymorphism. The species is a self-compatible insect-pollinated perennial, and seeds are water dispersed (hydrochory). Six hundred plants were analyzed from eight brackish and two freshwater populations within the Rhode River watershed/estuarine system. The genetic structure of the populations was assessed by fixation indices and spatial autocorrelation analyses. The degree of genetic differentiation among sites and gene flow between all paired combinations of sites (M ) was analyzed using three hypothetical gene flow models. Fixation indices indicated almost complete panmixia within populations, and spatial autocorrelations showed that genotypes were randomly distributed within sites, most likely the result of water dispersal of seeds. Allele frequencies were significantly different among sites, and estimated FST indicated moderate genetic differentiation (_ = 0.062). Genetic differences between populations were mostly explained by a gene flow model that accounted for the location of populations relative to the tidal stream. The importance of hydrochory in affecting spatial genetic structure was thus suggested both within and among H. moscheutos populations. 相似文献
16.
Variation at seven microsatellite loci was investigated in three local E. alaskanus populations from Norway and microsatellite variation was compared with allozyme variation. The percentage of polymorphic loci was 81%, the mean number of alleles per polymorphic locus was 5.7 and expected heterozygosity was 0.37. An F-statistic analysis revealed an overall 48% deficit of heterozygotes over Hardy-Weinberg expectations. Gene diversity is mainly explained by the within population component. The averaged between population differentiation coefficient, F st , over 7 loci is only 0.13, which accounts for only 13% of the whole diversity and was contrary to allozyme analysis. The mean genetic distance between populations was 0.12. However, a χ2 -test showed that allele frequencies were different (p < 0.05) among the populations at 5 of the 7 loci. In comparison with the genetic variation detected by allozymes, microsatellite loci showed higher levels of genetic variation. Microsatellite analysis revealed that population H10576 possesses the lowest genetic variation among the tested three populations, which concur with allozyme analysis. The dendrogram generated by microsatellites agreed very well with allozymic data. Our results suggest that natural selection may be an important factor in shaping the genetic diversity in these three local E. alaskanus populations. Possible explanations for deficit heterozygosity and incongruence between microsatellites and allozymes are discussed. Received November 6, 2001; accepted April 24, 2002 Published online: November 14, 2002 Addresses of the authors: Genlou Sun (e-mail: Genlou.sun@STMARYS.CA), Biology Department, Saint Mary's University, Halifax. Nova Scotia, B3H 3C3, Canada. B. Salomon, R. von Bothmer, Department of Crop Science, The Swedish University of Agricultural Sciences, P.O. Box 44, SE-230 53, Alnarp, Sweden. 相似文献
17.
Gene flow and drift shape the distribution of neutral genetic diversity in metapopulations, but their local rates are difficult to quantify. To identify gene flow between demes as distinct from individual migration, we present a modified Bayesian method to genetically test for descendants between an immigrant and a resident in a nonmigratory life stage. Applied to a metapopulation of pond-breeding European newts (Triturus cristatus, T. marmoratus) in western France, the evidence for gene flow was usually asymmetric and, for demes of known census size (N), translated into maximally seven reproducing immigrants. Temporal sampling also enabled the joint estimation of the effective demic population size (Ne) and the immigration rate m (including nonreproductive individuals). Ne ranged between 4.1 and 19.3 individuals, Ne/N ranged between 0.05 and 0.65 and always decreased with N; m was estimated as 0.19-0.63, and was possibly biased upwards. We discuss how genotypic data can reveal fine-scale demographic processes with important microevolutionary implications. 相似文献
18.
Despite geographical isolation and widespread phenotypic polymorphism, previous population genetic studies of Arctic charr, Salvelinus alpinus , have detected low levels of intra- and interpopulation variation. In this study, two approaches were used to test the generality of low genetic diversity among 15 Arctic charr populations from three major drainages of the central Alpine region of Europe. First, a representative subsample of each drainage was screened by PCR–RFLP analysis of mtDNA using 31 restriction enzymes. All individuals but one shared an identical haplotype. In contrast, microsatellite DNA variation revealed high levels of genetic diversity within and among populations. The number of alleles per locus ranged from six to 49, resulting in an overall expected heterozygosity from 0.72 ± 0.09 to 0.87 ± 0.04 depending on the locus. Despite evidence for fish transfers among Alpine charr populations over centuries, genetic diversity was substantially structured, as revealed by hierarchical Φ statistics. Eighteen per cent of total genetic variance was apportioned to substructuring among Rhône, Rhine, and Danube river systems, whereas 19% was due to partitioning among populations within each drainage. Cluster analyses corroborated these results by drainage-specific grouping of nonstocked populations, but also revealed damaging effects of stocking practices in others. However, these results suggest that long-term stocking practices did not generally alter natural genetic partitioning, and stress the importance of considering genetic diversity of Arctic charr in the Alpine region for sound management. The results also refute the general view of Arctic charr being a genetically depauperate species and show the potential usefulness of microsatellite DNAs in addressing evolutionary and conservation issues in this species. 相似文献
19.
Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation 总被引:3,自引:1,他引:3
Disentangling evolutionary forces that may interact to determine the patterns of genetic differentiation within and among wild populations is a major challenge in evolutionary biology. The objective of this study was to assess the genetic structure and the potential influence of several ecological variables on the extent of genetic differentiation at multiple spatial scales in a widely distributed species, the Atlantic salmon, Salmo salar . A total of 2775 anadromous fish were sampled from 51 rivers along the North American Atlantic coast and were genotyped using 13 microsatellites. A Bayesian analysis clustered these populations into seven genetically and geographically distinct groups, characterized by different environmental and ecological factors, mainly temperature. These groups were also characterized by different extent of genetic differentiation among populations. Dispersal was relatively high and of the same magnitude within compared to among regional groups, which contrasted with the maintenance of a regional genetic structure. However, genetic differentiation was lower among populations exchanging similar rates of local as opposed to inter-regional migrants, over the same geographical scale. This raised the hypothesis that gene flow could be constrained by local adaptation at the regional scale. Both coastal distance and temperature regime were found to influence the observed genetic structure according to landscape genetic analyses. The influence of other factors such as latitude, river length and altitude, migration tactic, and stocking was not significant at any spatial scale. Overall, these results suggested that the interaction between gene flow and thermal regime adaptation mainly explained the hierarchical genetic structure observed among Atlantic salmon populations. 相似文献
20.
Identification and quantification of spatial genetic structure (SGS) within populations remains a central element of understanding population structure at the local scale. Understanding such structure can inform on aspects of the species' biology, such as establishment patterns and gene dispersal distance, in addition to sampling design for genetic resource management and conservation. However, recent work has identified that variation in factors such as sampling methodology, population characteristics and marker system can all lead to significant variation in SGS estimates. Consequently, the extent to which estimates of SGS can be relied on to inform on the biology of a species or differentiate between experimental treatments is open to doubt. Following on from a recent report of unusually extensive SGS when assessed using amplified fragment length polymorphisms in the tree Fagus sylvatica, we explored whether this marker system led to similarly high estimates of SGS extent in other apparently similar populations of this species. In the three populations assessed, SGS extent was even stronger than this previously reported maximum, extending up to 360 m, an increase in up to 800% in comparison with the generally accepted maximum of 30-40 m based on the literature. Within this species, wide variation in SGS estimates exists, whether quantified as SGS intensity, extent or the Sp parameter. Consequently, we argue that greater standardization should be applied in sample design and SGS estimation and highlight five steps that can be taken to maximize the comparability between SGS estimates. 相似文献