首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
生理和行为的昼夜节律性调控对健康生活是必需的。越来越多的流行病学和遗传学证据显示昼夜节律的破坏与代谢紊乱性疾病相关联。在分子水平上,昼夜节律受到时钟蛋白组成的转录一翻译负反馈环的调控。时钟蛋白通过以下两种途径调节代谢:首先,时钟蛋白作为转录因子直接调节一些代谢关键步骤的限速酶和代谢相关核受体的表达,其次作为代谢相关核受体的辅调节因子来激活或抑制其转录活性。虽然时钟蛋白对代谢途径的调节导致代谢物水平呈昼夜节律振荡,但是产生的代谢物反过来又可以影响昼夜节律钟基因的表达,进而影响昼夜节律钟。深入研究昼夜节律钟与代谢的交互调节可能为治疗某些代谢紊乱性疾病提供新的治疗方案。  相似文献   

4.
Cholesterol (CH) homeostasis in the liver is regulated by enzymes of CH synthesis such as 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and catabolic enzymes such as cytochrome P-450, family 7, subfamily A, and polypeptide 1 (CYP7A1). Since a circadian clock controls the gene expression of these enzymes, these genes exhibit circadian rhythm in the liver. In this study, we examined the relationship between a diet containing CH and/or cholic acid (CA) and the circadian regulation of Hmgcr, low-density lipoprotein receptor (Ldlr), and Cyp7a1 gene expression in the mouse liver. A 4-wk CA diet lowered and eventually abolished the circadian expression of these genes. Not only clock genes such as period homolog 2 (Drosophila) (Per2) and brain and muscle arnt-like protein-1 (Bmal1) but also clock-controlled genes such as Hmgcr, Ldlr, and Cyp7a1 showed a reduced and arrhythmic expression pattern in the liver of Clock mutant mice. The reduced gene expression of Cyp7a1 in mice fed a diet containing CA or CH + CA was remarkable in the liver of Clock mutants compared with wild-type mice, and high liver CH accumulation was apparent in Clock mutant mice. In contrast, a CH diet without CA only elevated Cyp7a1 expression in both wild-type and Clock mutant mice. The present findings indicate that normal circadian clock function is important for the regulation of CH homeostasis in the mouse liver, especially in conjunction with a diet containing high CH and CA.  相似文献   

5.
The photosensitive teleost pineal organ exhibits a daily rhythm in melatonin production. In most teleosts, including the pike, this is driven by an endogenous pineal clock. An exception is the trout, in which the pineal melatonin rhythm is a direct response to darkness. This fundamental difference in the regulation of melatonin production in two closely related species provides investigators a novel opportunity to study the molecular mechanisms of vertebrate clock function. We have studied the circadian regulation of mRNA encoding two melatonin synthesis enzymes by Northern blot analysis. These two enzymes are serotonin N-acetyltransferase (AA-NAT), the penultimate enzyme in melatonin synthesis, and tryptophan hydroxylase (TPH), the first enzyme in melatonin synthesis. A clock controls expression of both AA-NAT and TPH mRNAs in the pineal organ of pike, but not that of trout, in which the levels of these mRNAs are tonically elevated. A parsimoneous explanation of this is that a single circadian system regulates the expression of both AA-NAT and TPH genes in most teleosts, and that in trout this system has been disrupted, perhaps by a single mutation.  相似文献   

6.
A long-term high-fat diet may result in a fatty liver. However, whether or not high-fat diets affect the hepatic circadian clock is controversial. The objective of this study is to investigate the effects of timed high-fat diet on the hepatic circadian clock and clock-controlled peroxisome proliferator-activated receptor (PPAR) α-mediated lipogenic gene expressions. Mice were orally administered high-fat milk in the evening for 4 weeks. The results showed that some hepatic clock genes, such as Clock, brain-muscle-Arnt-like 1 (Bmal1), Period 2 (Per2), and Cryptochrome 2 (Cry2) exhibited obvious changes in rhythms and/or amplitudes. Alterations in the expression of clock genes, in turn, further altered the circadian rhythm of PPARα expression. Among the PPARα target genes, cholesterol 7α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase, low-density lipoprotein receptor, lipoprotein lipase, and diacylglycerol acyltransferase (DGAT) showed marked changes in rhythms and/or amplitudes. In particular, significant changes in the expressions of DGAT and CYP7A1 were observed. The effects of a high-fat diet on the expression of lipogenic genes in the liver were accompanied by increased hepatic cholesterol and triglyceride levels. These results suggest that timed high-fat diets at night could change the hepatic circadian expressions of clock genes Clock, Bmal1, Per2, and Cry2 and subsequently alter the circadian expression of PPARα-mediated lipogenic genes, resulting in hepatic lipid accumulation.  相似文献   

7.
8.
9.
It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.  相似文献   

10.
11.
硫化氢(hydrogen sulfide, H_2S)是继一氧化氮(nitric oxide, NO)与一氧化碳(carbon oxide, CO)之后的第3种气体信号分子,在动植物中均发挥着重要的生理功能。生物钟是生物体的内在计时器,对动植物适应环境和生长发育至关重要。鉴于H_2S与生物钟调控的生理过程有较大的相关性,本文以拟南芥(Arabidopsis thaliana)为实验材料,对二者之间的关系进行了探索。结果发现,外源NaHS(H_2S供体)处理能够上调生物钟相关基因CCA1(circadian clock associated 1)和PRR9(pseudo-response regulator 9)的表达,而且在H_2S生成关键酶编码基因缺失的双突变体lcd/des1中,CCA1与PRR9的峰值表达时间明显滞后。CBFs(c-repeat binding factors)是受CCA1调控的冷胁迫响应基因,其表达也受H_2S的调控。lcd/des1中CBF1和CBF3的峰值表达时间延迟,同时在lcd/des1中CBF1、CBF2和CBF3都下调表达。lcd/des1幼苗对冷胁迫表现出更高的敏感性。本文也对拟南芥内源H_2S生成关键酶L-半胱氨酸脱硫基酶(L-cysteine desulfhydrase, LCD)与脱硫基酶1(desulfhydrase 1, DES1)编码基因的转录水平节律性进行了初步的探索。LCD的表达在1 d内未见明显的变化,而DES1的表达有明显的节律性,在早上8:00达到峰值。综上所述,H_2S能够通过调节CCA1与PRR9基因的表达调控生物钟,进而影响下游靶标CBFs基因的表达以增加拟南芥对冷胁迫的耐受性。  相似文献   

12.
Comes a time   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
15.
16.
17.
《Chronobiology international》2013,30(10):1458-1468
Synchrony between circadian and metabolic processes is critical to the maintenance of energy homeostasis. Studies on essence of chicken (EC), a chicken meat extract rich in proteins, amino acids and peptides, showed its effectiveness in alleviating fatigue and promoting metabolism. A recent study revealed that it facilitated the re-entrainment of clock genes (Bmal1, Cry1, Dec1, Per1 and Per2) in the pineal gland and liver in a rat model of circadian disruption. Here, we investigated the role of EC-facilitated circadian synchrony in the maintenance of the energy homeostasis using a mouse model of prolonged circadian disruption. Prolonged circadian disruption (12 weeks) resulted in hepatic maladaptation, manifested by a mild but significant (p?<?0.05) hepatomegaly, accompanied by disturbed hepatic lipid metabolism and liver injury (indicated by increased circulating hepatic enzymes). Evidently, there was marked elevations of hepatic inflammatory mediators (interleukin-1beta and interleukin-6), suggesting an underlying inflammation leading to the hepatic injury and functional impairment. Importantly, the disruption paradigm caused the decoupling between key metabolic regulators (e.g. mTOR and AMPK) and hepatic clock genes (Per1, Cry1, Dec1, Bmal1). Further, we showed that the loss of circadian synchrony between the master and hepatic clock genes (Per1, Cry1, Dec1, Bmal1) could be the underlying cause of the maladaptation. When supplemented with EC, the functional impairment and inflammation were abolished. The protective effects could be linked to its effectiveness in maintaining the synchrony between the master and hepatic clocks, and the resultant improved coupling of the circadian oscillators (Per1, Cry1, Dec1, Bmal1) and metabolic regulators (mTOR, AMPK). Overall, EC supplementation promoted the physiological adaptation to the prolonged circadian disruption through facilitation of endogenous circadian synchrony and the coupling of circadian oscillators and metabolic regulators. This forms an important basis for further elucidation of the physiological benefits of EC-facilitated circadian synchrony.  相似文献   

18.
19.
While diet-induced obesity has been exclusively attributed to increased caloric intake from fat, animals fed a high-fat diet (HFD) ad libitum (ad lib) eat frequently throughout day and night, disrupting the normal feeding cycle. To test whether obesity and metabolic diseases result from HFD or disruption of metabolic cycles, we subjected mice to either ad lib or time-restricted feeding (tRF) of a HFD for 8 hr per day. Mice under tRF consume equivalent calories from HFD as those with ad lib access yet are protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation and have improved motor coordination. The tRF regimen improved CREB, mTOR, and AMPK pathway function and oscillations of the circadian clock and their target genes' expression. These changes in catabolic and anabolic pathways altered liver metabolome and improved nutrient utilization and energy expenditure. We demonstrate in mice that tRF regimen is a nonpharmacological strategy against obesity and associated diseases.  相似文献   

20.
The circadian clock is closely associated with energy metabolism. The liver clock can rapidly adapt to a new feeding cycle within a few days, whereas the lung clock is gradually entrained over one week. However, the mechanism underlying tissue-specific clock resetting is not fully understood. To characterize the rapid response to feeding cues in the liver clock, we examined the effects of a single time-delayed feeding on circadian rhythms in the liver and lungs of Per2::Luc reporter knockin mice. After adapting to a night-time restricted feeding schedule, the mice were fed according to a 4, 8, or 13 h delayed schedule on the last day. The phase of the liver clock was delayed in all groups with delayed feeding, whereas the lung clock remained unaffected. We then examined the acute response of clock and metabolism-related genes in the liver using focused DNA-microarrays. Clock mutant mice were bred under constant light to attenuate the endogenous circadian rhythm, and gene expression profiles were determined during 24 h of fasting followed by 8 h of feeding. Per2 and Dec1 were significantly increased within 1 h of feeding. Real-time RT-PCR analysis revealed a similarly acute response in hepatic clock gene expression caused by feeding wild type mice after an overnight fast. In addition to Per2 and Dec1, the expression of Per1 increased, and that of Rev-erbα decreased in the liver within 1 h of feeding after fasting, whereas none of these clock genes were affected in the lung. Moreover, an intraperitoneal injection of glucose combined with amino acids, but not either alone, reproduced a similar hepatic response. Our findings show that multiple clock genes respond to nutritional cues within 1 h in the liver but not in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号