首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Inbreeding of the sexualized planarian, Dugesia ryukyuensis, produces eye-defective worms, menashi, in the F1 population. To study the effects of this mutation on the eye, we observed the eye-region of menashi using electron microscopy and compared it with the regenerating eye in wild-type worms. The intact eye of wild-type planarians consisted of a few pigment cells and a number of visual cells. Pigment cells containing spherically-shaped electron-dense melanosomes contacted each other and enclosed rhabdomes of visual cells. Rhabdomes had numerous tubular microvilli extending radially and touching the pigment cells. However, in menashi, various lengths of tubular microvilli were irregularly distributed near the pigment cells, which contained numerous electron-lucent premelanosomes, and no adhesive structures were found between the pigment cells. The premelanosomes of menashi were equal in size to those seen after 2 days of regeneration in wild-type planarians and were similar in maturation to those found after 3 days of regeneration in wild-type planarian. These results suggest that menashi is defective in the mechanism(s) of developing pigment granules and constructing visual cells. These findings also suggest that pigment cells in menashi are defective in the mechanism(s) involved with cell adhesion.  相似文献   

3.
4.
Inbreeding of the sexualized planarian, Dugesia ryukyuensis, produces eye‐defective worms, menashi, in the F1 population. To study the effects of this mutation on the eye, we observed the eye‐region of menashi using electron microscopy and compared it with the regenerating eye in wild‐type worms. The intact eye of wild‐type planarians consisted of a few pigment cells and a number of visual cells. Pigment cells containing spherically‐shaped electron‐dense melanosomes contacted each other and enclosed rhabdomes of visual cells. Rhabdomes had numerous tubular microvilli extending radially and touching the pigment cells. However, in menashi, various lengths of tubular microvilli were irregularly distributed near the pigment cells, which contained numerous electron‐lucent premelanosomes, and no adhesive structures were found between the pigment cells. The premelanosomes of menashi were equal in size to those seen after 2 days of regeneration in wild‐type planarians and were similar in maturation to those found after 3 days of regeneration in wild‐type planarian. These results suggest that menashi is defective in the mechanism(s) of developing pigment granules and constructing visual cells. These findings also suggest that pigment cells in menashi are defective in the mechanism(s) involved with cell adhesion.  相似文献   

5.
A conserved network of nuclear proteins is crucial to eye formation in both vertebrates and invertebrates. The finding that freshwater planarians can regenerate eyes without the contribution of Pax6 suggests that alternative combinations of regulatory elements may control the morphogenesis of the prototypic planarian eye. To further dissect the molecular events controlling eye regeneration in planarians, we investigated the role of eyes absent (Djeya) and six-1 (Djsix-1) genes in Dugesia japonica. These genes are expressed in both regenerating eyes and in differentiated photoreceptors of intact adults. Through RNAi studies, we show that Djsix-1 and Djeya are both critical for the regeneration of normal eyes in planarians and genetically cooperate in vivo to establish correct eye cell differentiation. We further demonstrate that the genetic interaction is mediated by physical interaction between the evolutionarily conserved domains of these two proteins. These data indicate that planarians use cooperatively Djsix-1 and Djeya for the proper specification of photoreceptors, implicating that the mechanism involving their evolutionarily conserved domains can be very ancient. Finally, both Djsix-1 and Djeya double-stranded RNA are substantially more effective at producing no-eye phenotypes in the second round of regeneration. This is probably due to the significant plasticity of the planarian model system, based on the presence of a stable population of totipotent stem cells, which ensure the rapid cell turnover of all differentiated cell types.  相似文献   

6.
Six/sine oculis (Six/so) class genes, with representatives in vertebrates and invertebrates, include members with key developmental roles in the anterior part of the central nervous system (CNS) and eye. Having characterized the role of the first planarian gene of the Six/so family in eye development, we attempted to identify novel genes of this family related to the platyhelminth eye genetic network. We isolated a new Six/so gene in the planarian Girardia tigrina, Gtsix-3, which belongs to the Six3/6 class. Whole mount in situ hybridization revealed Gtsix3 expression in a stripe surrounding the cephalic ganglia in adults. This spatial pattern corresponds to the cephalic branches, the nerve cells that connect the CNS with the marginal sensory organs located continuously at the edge of the head. During head regeneration, Gtsix-3 shows delayed activation compared to other head genes, with an initial two spot pattern that later evolves to a continuous lateral expression in the new regenerated cephalic ganglia with a final reduction to the adult pattern. However, Gtsix-3 is not activated in tail regeneration and no eye expression is observed at any regenerative stage. These findings provide a new marker for the developing anterior nervous system and evidence the complexity of planarian brain.  相似文献   

7.
Six/sine oculis (Six/so) class genes, with representatives in vertebrates and invertebrates, include members with key developmental roles in the anterior part of the central nervous system (CNS) and eye. Having characterized the role of the first planarian gene of the Six/so family in eye development, we attempted to identify novel genes of this family related to the platyhelminth eye genetic network. We isolated a new Six/so gene in the planarian Girardia tigrina, Gtsix-3, which belongs to the Six3/6 class. Whole mount in situ hybridization revealed Gtsix3 expression in a stripe surrounding the cephalic ganglia in adults. This spatial pattern corresponds to the cephalic branches, the nerve cells that connect the CNS with the marginal sensory organs located continuously at the edge of the head. During head regeneration, Gtsix-3 shows delayed activation compared to other head genes, with an initial two spot pattern that later evolves to a continuous lateral expression in the new regenerated cephalic ganglia with a final reduction to the adult pattern. However, Gtsix-3 is not activated in tail regeneration and no eye expression is observed at any regenerative stage. These findings provide a new marker for the developing anterior nervous system and evidence the complexity of planarian brain.  相似文献   

8.
9.
The roughest locus of Drosophila melanogaster encodes a transmembrane protein of the immunoglobulin superfamily required for several developmental processes, including axonal pathfinding in the developing optic lobe, mechanosensory bristle differentiation and myogenesis. In the compound eye, rst was previously shown to be required for establishing the correct number and spacing of secondary and tertiary pigment cells during the final steps of ommatidial assembly. We have further investigated its function in the developing pupal retina by performing a developmental and molecular analysis of a novel dominant rst allele, rst(D). In addition to showing evidence that rst(D) is a regulatory mutant, the results strongly suggest a previously unnoticed role of the rst gene in the differentiation of secondary/tertiary pigment cell fate as well as establishing the correct timing of surplus cell removal by programmed cell death in the compound eye.  相似文献   

10.
11.
12.
Regeneration in planarians is an intriguing phenomenon, based on the presence of pluripotent stem cells, known as neoblasts. Following amputation, these cells activate mitotic divisions, migrate distally and undergo differentiation, giving rise to the regeneration blastema. We have identified two msh/msx-related genes, Djmsh1 and Djmsh2, which are expressed in distinct cell populations of the planarian Dugesia japonica and activated, with different patterns, during head regeneration. We demonstrate that RNA interference of Djmsh1 or Djmsh2 generates a delay in the growth of cephalic blastema, interfering with the dynamics of mitoses during its initial formation. Our data also reveal that the activity of the two planarian msh genes is required to regulate Djbmp expression during head regeneration. This study identifies, for the first time, a functional association between muscle segment homeobox (MSH) homeoproteins and BMP signaling during stem cell-based regeneration of the planarian head and provides a functional analysis of how msh genes may regulate in vivo the regenerative response of planarian stem cells.  相似文献   

13.
Planarians have a well-organized central nervous system (CNS), including a brain, and can regenerate the CNS from almost any portion of the body using pluripotent stem cells. In this study, to identify genes required for CNS regeneration, genes expressed in the regenerating CNS were systematically cloned and subjected to functional analysis. RNA interference (RNAi) of the planarian clathrin heavy chain (DjCHC) gene prevented CNS regeneration in the intermediate stage of regeneration prior to neural circuit formation. To analyze DjCHC gene function at the cellular level, we developed a functional analysis method using primary cultures of planarian neurons purified by fluorescence-activated cell sorting (FACS) after RNAi treatment. Using this method, we showed that the DjCHC gene was not essential for neural differentiation, but was required for neurite extension and maintenance, and that DjCHC-RNAi-treated neurons entered a TUNEL-positive apoptotic state. DjCHC-RNAi-treated uncut planarians showed brain atrophy, and the DjCHC-RNAi planarian phenotype was mimicked by RNAi-treated planarians of the mu-2 (micro2) gene, which is involved in endocytosis, but not the mu-1 (micro1) gene, which is involved in exocytosis. Thus, clathrin-mediated endocytic signals may be required for not only maintenance of neurons after synaptic formation, but also axonal extension at the early stage of neural differentiation.  相似文献   

14.
Eye specification in Drosophila is thought be controlled by a set of seven nuclear factors that includes the Pax6 homolog, Eyeless. This group of genes is conserved throughout evolution and has been repeatedly recruited for eye specification. Several of these genes are expressed within the developing eyes of vertebrates and mutations in several mouse and human orthologs are the underlying causes of retinal disease syndromes. Ectopic expression in Drosophila of any one of these genes is capable of inducing retinal development, while loss-of-function mutations delete the developing eye. These nuclear factors comprise a complex regulatory network and it is thought that their combined activities are required for the formation of the eye. We examined the expression patterns of four eye specification genes, eyeless (ey), sine oculis (so), eyes absent (eya), and dachshund (dac) throughout all time points of embryogenesis and show that only eyeless is expressed within the embryonic eye anlagen. This is consistent with a recently proposed model in which the eye primordium acquires its competence to become retinal tissue over several time points of development. We also compare the expression of Ey with that of a putative antennal specifying gene Distal-less (Dll). The expression patterns described here are quite intriguing and raise the possibility that these genes have even earlier and wide ranging roles in establishing the head and visual field.  相似文献   

15.
Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The freshwater planarian is a powerful animal model for studying regeneration and stem cell activity in vivo.During regeneration,stem ceils (neoblasts in planarian) migrated to the wounding edge to re-build missing parts of the body.However, proteins involved in regulating cell migration during planarian regeneration have not been studied extensively.Here we report two small GTPase genes (Djrho2 and Djrho3) of Dugesia japonica (strain Pek-1).In situ hybridization results indicated that Djrho2 was expressed throughout the body with the exception of the pharynx region while Djrho3 was specifically expressed along the gastro-vaseular system.Djrho2 was largely expressed in neoblasts since its expression was sensitive to X-ray irradiation.In Djrho2-RNAi planarians, smaller anterior blaste-mas were observed in tail fragments during regeneration.Consistently, defective regeneration of visual nerve was detected by immu-nostainning with VC-1 antibody.These results suggested that Djrho2 is required for proper anterior regeneration in planairan.In contrast,no abnormality was observed after RNAi of Djrho3.We compared protein compositions of control and Djrho2-RNAi planarians using an optimized proteomic approach.Twenty-two up-regulated and 26 de-regulated protein spots were observed in the two-dimensional elec-trophoresis gels, and 17 proteins were successfully identified by Mass Spectrometry (MS) analysis.Among them, 6 actin-binding or cy-toskeleton-related proteins were found de-expressed in Djrho2-RNAi animals, suggesting that abnormal cytoskeleton assembling and cell migration were likely reasons of defected regeneration.  相似文献   

17.
Wnt signaling functions in axis formation and morphogenesis in various animals and organs. Here we report that Wnt signaling is required for proper brain patterning during planarian brain regeneration. We showed here that one of the Wnt homologues in the planarian Dugesia japonica, DjwntA, was expressed in the posterior region of the brain. When DjwntA-knockdown planarians were produced by RNAi, they could regenerate their heads at the anterior ends of the fragments, but formed ectopic eyes with irregular posterior lateral branches and brain expansion. This suggests that the Wnt signal may be involved in antero-posterior (A-P) patterning of the planarian brain, as in vertebrates. We also investigated the relationship between the DjwntA and nou-darake/FGFR signal systems, as knockdown planarians of these genes showed similar phenotypes. Double-knockdown planarians of these genes did not show any synergistic effects, suggesting that the two signal systems function independently in the process of brain regeneration, which accords with the fact that nou-darake was expressed earlier than DjwntA during brain regeneration. These observations suggest that the nou-darake/FGFR signal may be involved in brain rudiment formation during the early stage of head regeneration, and subsequently the DjwntA signal may function in A-P patterning of the brain rudiment.  相似文献   

18.
19.
Patterning of the vertebrate eye appears to be controlled by the mutual regulation and the progressive restriction of the expression domains of a number of genes initially co-expressed within the eye anlage. Previous data suggest that both Otx1 and Otx2 might contribute to the establishment of the different eye territories. Here, we have analysed the ocular phenotype of mice carrying different functional copies of Otx1 and Otx2 and we show that these genes are required in a dose-dependent manner for the normal development of the eye. Thus, all Otx1(-/-); Otx2(+/-) and 30% of Otx1(+/-); Otx2(+/-) genotypes presented consistent and profound ocular malformation, including lens, pigment epithelium, neural retina and optic stalk defects. During embryonic development, optic vesicle infolding was severely altered and the expression of pigment epithelium-specific genes, such as Mitf or tyrosinase, was lost. Lack of pigment epithelium specification was associated with an expansion of the prospective neural retina and optic stalk territories, as determined by the expression of Pax6, Six3 and Pax2. Later in development the presumptive pigment epithelium region acquired features of mature neural retina, including the generation of Islet1-positive neurones. Furthermore, in Otx1(-/-); Otx2(+/-) mice neural retina cell proliferation, cell differentiation and apoptotic cell death were also severely affected. Based on these findings we propose a model in which Otx gene products are required for the determination and differentiation of the pigment epithelium, co-operating with other eye patterning genes in the determination of the specialised tissues that will constitute the mature vertebrate eye.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号