共查询到20条相似文献,搜索用时 15 毫秒
1.
The DnaK chaperone is necessary for alpha-complementation of beta-galactosidase in Escherichia coli
下载免费PDF全文

We show here the involvement of the molecular chaperone DnaK from Escherichia coli in the in vivo alpha-complementation of the beta-galactosidase. In the dnaK756(Ts) mutant, alpha-complementation occurs when the organisms are grown at 30 degrees C but not at 37 or 40 degrees C, although these temperatures are permissive for bacterial growth. Plasmid-driven expression of wild-type dnaK restores the alpha-complementation in the mutant but also stimulates it in a dnaK(+) strain. In a mutant which contains a disrupted dnaK gene (DeltadnaK52::Cm(r)), alpha-complementation is also impaired, even at 30 degrees C. This observation provides an easy and original phenotype to detect subtle functional changes in a protein such as the DnaK756 chaperone, within the physiologically relevant temperature. 相似文献
2.
3.
The Tat (twin-arginine translocation) system from Escherichia coli transports folded proteins with N-terminal twin-arginine signal peptides across the cytoplasmic membrane. The influence of general chaperones on Tat substrate targeting has not been clarified so far. Here we show that the chaperones SlyD and DnaK bind to a broad range of different Tat signal sequences in vitro and in vivo. Initially, SlyD and GroEL were purified from DnaK-deficient extracts by their affinity to various Tat signal sequences. Of these, only SlyD bound Tat signal sequences also in the presence of DnaK. SlyD and DnaK also co-purified with Tat substrate precursors, demonstrating the binding to Tat signal sequences in vivo. Deletion of dnaK completely abolished Tat-dependent translocation of CueO, but not of DmsA, YcdB, or HiPIP, indicating that DnaK has an essential role specifically for CueO. DnaK was not required for stability of the CueO precursor and thus served in some essential step after folding. A CueO signal sequence fusion to HiPIP was Tat-dependently transported without the need of DnaK, indicating that the mature domain of CueO is responsible for the DnaK dependence. The overall results suggest that SlyD and DnaK are in the set of chaperones that can serve as general Tat signal-binding proteins. DnaK has additional functions that are indispensable for the targeting of CueO. 相似文献
4.
An Escherichia coli mutant lacking HSP70 function, delta dnaK52, is unable to grow at both high and low temperatures and, at intermediate temperature (30 degrees C), displays defects in major cellular processes such as cell division, chromosome segregation and regulation of heat shock gene expression that lead to poor growth and genetic instability of the cells. In an effort to understand the roles of molecular chaperones such as DnaK in cellular metabolism, we analyzed secondary mutations (sid) that suppress the growth defects of delta dnaK52 mutants at 30 degrees C and also permit growth at low temperature. Of the five suppressors we analyzed, four were of the sidB class and mapped within rpoH, which encodes the heat shock specific sigma subunit (sigma 32) of RNA polymerase. The sidB mutations affected four different regions of the sigma 32 protein and, in one case, resulted in a several fold reduction in the cellular concentration of sigma 32. Presence of any of the sidB mutations in delta dnaK52 mutants as well as in dnaK+ cells caused down-regulation of heat shock gene expression at 30 degrees C and decreased induction of the heat shock response after shift to 43.5 degrees C. These findings suggest that the physiologically most significant function of DnaK in the metabolism of unstressed cells is its function in heat shock gene regulation. 相似文献
5.
Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone 总被引:5,自引:0,他引:5
下载免费PDF全文

The evolutionarily conserved DnaJ proteins are essential components of Hsp70 chaperone systems. The DnaJ homologue of Escherichia coli associates with chaperone substrates and mediates their ATP hydrolysis-dependent locking into the binding cavity of its Hsp70 partner, DnaK. To determine the substrate specificity of DnaJ proteins, we screened 1633 peptides derived from 14 protein sequences for binding to E.coli DnaJ. The binding motif of DnaJ consists of a hydrophobic core of approximately eight residues enriched for aromatic and large aliphatic hydrophobic residues and arginine. The hydrophobicity of this motif explains why DnaJ itself can prevent protein aggregation. Although this motif shows differences from DnaK's binding motif, DnaJ and DnaK share the majority of binding peptides. In contrast to DnaK, DnaJ binds peptides consisting of L- and D-amino acids, and therefore is not restricted by backbone contacts. These features allow DnaJ to scan hydrophobic protein surfaces and initiate the functional cycle of the DnaK system by associating with hydrophobic exposed patches and subsequent targeting of DnaK to these or to hydrophobic patches in spatial neighbourhood. 相似文献
6.
7.
Localization of DnaK (chaperone 70) from Escherichia coli in an osmotic-shock-sensitive compartment of the cytoplasm. 总被引:1,自引:1,他引:1
下载免费PDF全文

The chaperone DnaK can be released (up to 40%) by osmotic shock, a procedure which is known to release the periplasmic proteins and a select group of cytoplasmic proteins (including thioredoxin and elongation factor Tu) possibly associated with the inner face of the inner membrane. As distinct from periplasmic proteins, DnaK is retained within spheroplasts prepared with lysozyme and EDTA. The ability to isolate DnaK with a membrane fraction prepared under gentle lysis conditions supports a peripheral association between DnaK and the cytoplasmic membrane. Furthermore, heat shock transiently increases the localization of DnaK in the osmotic-shock-sensitive compartment of the cytoplasm. We conclude that DnaK belongs to the select group of cytoplasmic proteins released by osmotic shock, which are possibly located at Bayer adhesion sites, where the inner and outer membranes are contiguous. 相似文献
8.
Bischofberger P Han W Feifel B Schönfeld HJ Christen P 《The Journal of biological chemistry》2003,278(21):19044-19047
DnaK, a Hsp70 homolog of Escherichia coli, together with its co-chaperones DnaJ and GrpE protects denatured proteins from aggregation and promotes their refolding by an ATP-consuming mechanism. DnaJ not only stimulates the gamma-phosphate cleavage of DnaK-bound ATP but also binds polypeptide substrates on its own. Unfolded polypeptides, such as denatured luciferase, thus form ternary complexes with DnaJ and DnaK. A previous study has shown that d-peptides compete with l-peptides for the same binding site in DnaJ but do not bind to DnaK (Feifel, B., Sch?nfeld, H.-J., and Christen, P. (1998) J. Biol. Chem. 273, 11999-12002). Here we report that d-peptides efficiently inhibit the refolding of denatured luciferase by the DnaK/DnaJ/GrpE chaperone system (EC50 = 1-2 microM). The inhibition of the chaperone action is due to the binding of d-peptide to DnaJ (Kd = 1-2 microM), which seems to preclude DnaJ from forming ternary (ATP.DnaK)m.substrate.DnaJn complexes. Apparently, simultaneous binding of DnaJ and DnaK to one and the same target polypeptide is essential for effective chaperone action. 相似文献
9.
The Escherichia coli molecular chaperone protein ClpB is a member of the highly conserved Hsp100/Clp protein family. Previous studies have shown that the ClpB protein is needed for bacterial thermotolerance. Purified ClpB protein has been shown to reactivate chemically and heat-denatured proteins. In this work we demonstrate that the combined action of ClpB and the DnaK, DnaJ, and GrpE chaperones leads to the activation of DNA replication of the broad-host-range plasmid RK2. In contrast, ClpB is not needed for the activation of the oriC-dependent replication of E. coli. Using purified protein components we show that the ClpB/DnaK/DnaJ/GrpE synergistic action activates the plasmid RK2 replication initiation protein TrfA by converting inactive dimers to an active monomer form. In contrast, Hsp78/Ssc1/Mdj1/Mge1, the corresponding protein system from yeast mitochondria, cannot activate the TrfA replication protein. Our results demonstrate for the first time that the ClpB/DnaK/DnaJ/GrpE system is involved in protein monomerization and in the activation of a DNA replication factor. 相似文献
10.
11.
SecB functions as a cytosolic signal recognition factor for protein export in E. coli 总被引:20,自引:0,他引:20
A purified 64 kd protein, consisting of four identical subunits of the 16 kd SecB, binds to the signal sequence of preproteins prior to their translocation across inverted vesicles (INV) derived from the E. coli plasma membrane. The purified SecB tetramer competes with canine signal recognition particle (SRP) in signal sequence binding and thus behaves as a prokaryotic equivalent of SRP. As shown by cell fractionation and immunoblot analysis with anti-SecB antibodies, SecB is a cytosolic protein. An E. coli supernatant depleted of SecB after passage through an anti-SecB Sepharose column retains full translation activity but is unable to support translocation into added INV. Translocation into INV is fully restored by readdition of purified SecB. 相似文献
12.
Molecular chaperones of the 70 kDa family mediate protein–protein interactions by selectively binding to partially unfolded segments of other proteins in an ATP-dependent activity cycle. Previous investigations of chaperone substrate selectivity have shown that chaperones have a propensity to bind to partially unfolded segments of polypeptides that contain bulky hydrophobic residues. However, recent investigations have shown that 70 kDa chaperones such as DnaK, which is expressed by Escherichia coli, also bind short basic peptides and even polycations. We report here that DnaK specifically binds to the polycation protamine when [protamine]/[DnaK] is near unity, whereas protamine induces the aggregations of DnaK when [protamine]/[DnaK] ≥ 20. Complexes between DnaK and protamine were detected using fluorescently labeled protamine (protamine*) in conjunction with high performance size exclusion chromatography. We found that: (i) an unlabeled peptide of known affinity for DnaK partially inhibited the formation of DnaK-protamine* complexes; (ii) Mg-ATP (and Mg-γ-S-ATP) significantly reduced the affinity of protamine* for DnaK; and (iii) the rate of DnaK-protamine* complex dissociation is highly temperature-sensitive, with apparent activation enthalpies (ΔH*) equal to 32 ± 4 and 28 ± 1 kcal mol−1 in the absence of added nucleotide and in the presence of ADP, respectively. The results are consistent with the specific binding of protamine* at the (poly)peptide binding site of DnaK. A model is proposed to account for the protamine-induced aggregation of DnaK. 相似文献
13.
Physical interactions between members of the DnaK chaperone machinery: characterization of the DnaK.GrpE complex
下载免费PDF全文

Many of the functions of the Escherichia coli Hsp 70, DnaK, require two cofactors, DnaJ and GrpE. GrpE acts as a nucleotide exchange factor in the DnaK reaction cycle but the details of its mechanism remain unclear. GrpE has high affinity for monomeric native DnaK, with a Kd estimated at ≤50 nM. GrpE is a very asymmetric molecule and exists as either a dimer or trimer in its native state. The stoichiometry of GrpE to DnaK in the isolated complex was 3:1, suggesting a trimer. Formation of the complex is quite fast (kon >1 S−1, whereas the off-rate is very slow on the HPLC timescale (koff ≤ 10−4 S−1). GrpE has no affinity for ATP or ADP, nor the oligomeric and moltn globule states of DnaK. The complex is much more thermally stable than either GrpE or DnaK alone, and prevents the formation of the molten globule-like state of DnaK at physiologically relevant temperatures. Formation of the complex does not cause any change in secondary structure, as determined by the lack of change in the circular dichroism spectrum. However, binding of GrpE induces a similar tertiary strcutral change in DnaK to that induced by binding of ATP1 based on the blue shift in λmax from the fluroscence of the single tryptophan in DnaK. The nucleotide exchange properties of GrpE can be explained by the conformational change which may represent the opening of the nucleotide cleft on DnaK, subsequently inducing a low affinity state for ADP. 相似文献
14.
DnaJ, DjlA and CbpA are the J-domain proteins of DnaK, the major Hsp70 of Escherichia coli. CbpA was originally discovered as a DNA binding protein. Here, we show that DNA binding is a property of DnaJ and DjlA as well. Of special interest in this respect is DjlA, as this cytoplasmic protein is membrane bound and, as shown here, its affinity for DNA is extremely high. The finding that all the three J-proteins of DnaK are DNA binding proteins sheds new light on the cellular activity of these proteins. 相似文献
15.
16.
Misfolding-prone proteins produced in bacteria usually fail to adopt their native conformation and aggregate. In cells producing folding-reluctant protein species, folding modulators are supposed to be limiting, a fact that enhances protein deposition. Therefore, coproducing DnaK or other main chaperones along with the target protein has been a common approach to gain solubility, although with very inconsistent and often discouraging results. In an attempt to understand the reason for this inconsistency, the impact of exogenous DnaK (encoded in an accompanying plasmid) on two protein features observed as indicators of protein quality, namely solubility and functionality, has been analysed here through the specific fluorescence emission of a reporter Green Fluorescent Protein (GFP). Intriguingly, GFP solubility is strongly dependent on its own yield but poorly affected by DnaK levels. On the contrary, the specific fluorescence of both soluble and insoluble GFP populations is simultaneously modulated by the availability of DnaK, with a profile that is clearly dissimilar to that shown by protein solubility. Therefore, solubility, not being coincident with the biological activity of the target protein, might not be a robust indicator of protein quality. 相似文献
17.
The molecular chaperones ClpB (Hsp104) and DnaK (Hsp70) co-operate in the ATP-dependent resolubilization of aggregated proteins. A sequential mechanism has been proposed for this reaction; however, the mechanism and the functional interplay between both chaperones remain poorly defined. Here, we show for the first time that complex formation of ClpB and DnaK can be detected by using various types of affinity chromatography methods. The finding that the DnaK chaperone of Escherichia coli is not co-operating with ClpB from Thermus thermophilus further strengthens the specificity of this complex. The affinity of the complex is weak and interaction between both chaperones is nucleotide-dependent. The presence of ADP, which is shown to cause dissociation of ClpB(Tth), as well as ClpB deletion mutants incapable of oligomer formation prevent ClpB-DnaK complex formation. The experiments presented indicate a correlation between the oligomeric state of ClpB and its ability to interact with DnaK. The chaperone complex described here might facilitate transfer of intermediates between ClpB and DnaK during refolding of substrates from aggregates. 相似文献
18.
DnaK/DnaJ chaperone system reactivates endogenous E. coli thermostable FBP aldolase in vivo and in vitro; the effect is enhanced by GroE heat shock proteins
下载免费PDF全文

Thermally aggregated, endogenous proteins in Escherichia coli cells form the S fraction, which is separable by sucrose density gradient centrifugation. To date, relatively little is known about the mechanisms of elimination of the heat-aggregated proteins from E. coli cells and the composition of the S fraction. We have identified several proteins of the S fraction using 2D-gel electrophoresis and microsequencing. A thermostable II class fructose-1,6-bisphosphate aldolase (Fda protein) appeared to be one of numerous proteins of the S fraction. Fda was purified from E. coli overproducer strain and used as a model substrate for investigation of the role of Hsps in prevention and repair of thermal denaturation of proteins both in vivo and in vitro. We found that the heat inactivation of Fda was reversible and that its reactivation in vivo and in vitro required mainly the assistance of the DnaK/DnaJ chaperone system. The dnaK756 and dnaJ259 mutations had a negative effect on the reactivation of thermally inactivated Fda. Moreover, we showed that the reactivation process in vitro was enhanced when GroEL/GroES were added together with DnaK/DnaJ. GroEL/GroES alone were inefficient in the resolubilization or reactivation of the heat-aggregated Fda. It is supposed that the denaturation of the thermostable Fda in vivo results rather from a temporary and transient deficit of Hsps than from the direct heat effect. 相似文献
19.
Abstract Fourteen species of ciliates, seven of which are new, were found living in a sample of anoxic water collected from a small lake in Spain. The species belong to all six orders in which anaerobic ciliates have been described and they include the first anaerobic representatives of the order Prostomatida. This surprising diversity is probably sustained because it embraces all ciliate feeding types, and because protozoa are the only important consumers of the diversity of microbes in anoxic habitats. Six of the anaerobic ciliate species have aerobic congeners; this strengthens the contention that anaerobic ciliates evolved independently from aerobes belonging to several taxonomic groups. 相似文献
20.
The chaperone function of DnaK requires the coupling of ATPase activity with substrate binding through residue E171. 总被引:9,自引:1,他引:9
下载免费PDF全文

Central to the chaperone function of Hsp70 stress proteins including Escherichia coli DnaK is the ability of Hsp70 to bind unfolded protein substrates in an ATP-dependent manner. Mg2+/ATP dissociates bound substrates and, furthermore, substrate binding stimulates the ATPase of Hsp70. This coupling is proposed to require a glutamate residue, E175 of bovine Hsc70, that is entirely conserved within the Hsp70 family, as it contacts bound Mg2+/ATP and is part of a hinge required for a postulated ATP-dependent opening/closing movement of the nucleotide binding cleft which then triggers substrate release. We analyzed the effects of dnaK mutations which alter the corresponding glutamate-171 of DnaK to alanine, leucine or lysine. In vivo, the mutated dnaK alleles failed to complement the delta dnaK52 mutation and were dominant negative in dnaK+ cells. In vitro, all three mutant DnaK proteins were inactive in known DnaK-dependent reactions, including refolding of denatured luciferase and initiation of lambda DNA replication. The mutant proteins retained ATPase activity, as well as the capacity to bind peptide substrates. The intrinsic ATPase activities of the mutant proteins, however, did exhibit increased Km and Vmax values. More importantly, these mutant proteins showed no stimulation of ATPase activity by substrates and no substrate dissociation by Mg2+/ATP. Thus, glutamate-171 is required for coupling of ATPase activity with substrate binding, and this coupling is essential for the chaperone function of DnaK. 相似文献