首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The acquisition of cellular immortality is a critical step in the tumorigenic process that requires stabilization of the telomeres, nucleoprotein structures at the termini of chromosomes. While the majority of human tumors stabilize their telomeres through activation of telomerase (hTERT), a significant portion (10-15%) utilize a poorly understood alternative mechanism of telomere maintenance referred to as ALT (Alternative Lengthening of Telomeres). Strikingly, the ALT mechanism is more prevalent in tumors arising from tissues of mesenchymal origin than in those of epithelial origin. This observation suggests that cell type specific mechanisms favor the activation of the ALT mechanism versus telomerase in human tumorigenesis. In addition, the presence of an alternative mechanism of telomere maintenance raises the possibility that telomerase-positive tumors undergoing anti-telomerase therapies might escape by activating the ALT pathway. For these reasons, delineating the ALT mechanism is critical for our understanding of the tumorigenic process and the development of ALT-specific anti-neoplastic therapies. Recent studies have demonstrated that epigenetic modifications at telomeres have a profound effect on telomere length, and may also be linked to the ALT mechanism. In this review we focus on these recent advances and their implications in telomere maintenance.  相似文献   

2.
The acquisition of cellular immortality is a critical step in human tumorigenesis. While the vast majority of human tumors activate the catalytic component of telomerase (hTERT) to stabilize their telomeres and attain immortality, a significant portion (7-10%) utilize a poorly defined alternative form of telomere maintenance referred to as ALT. Interestingly, telomerase activation is often favored in tumors arising from the epithelial compartment whereas ALT occurs in a more significant portion of tumors that arise from tissues of mesenchymal origin. This observation raises the possibility that cell type specific mechanisms favor the activation of telomerase versus ALT in human tumorigenesis. Because cellular immortality is critical to tumorigenesis it may represent an important anti-neoplastic target. Indeed, several approaches have successfully eliminated telomerase activity in human tumor models and some of these approaches are now moving into clinical trials. While these results are encouraging, it is clear that these approaches will have no impact on cells that utilize the ALT mechanism for telomere maintenance. Furthermore, the existence of ALT raises the possibility that telomerase-positive tumors undergoing anti-telomerase therapies may escape by activating the ALT pathway. For these reasons a detailed understanding of the ALT pathway is critical to the future design of anti-neoplastic therapies.  相似文献   

3.
4.
It has been shown previously that some immortalized human cells maintain their telomeres in the absence of significant levels of telomerase activity by a mechanism referred to as alternative lengthening of telomeres (ALT). Cells utilizing ALT have telomeres of very heterogeneous length, ranging from very short to very long. Here we report the effect of telomerase expression in the ALT cell line GM847. Expression of exogenous hTERT in GM847 (GM847/hTERT) cells resulted in lengthening of the shortest telomeres; this is the first evidence that expression of hTERT in ALT cells can induce telomerase that is active at the telomere. However, rapid fluctuation in telomere length still occurred in the GM847/hTERT cells after more than 100 population doublings. Very long telomeres and ALT-associated promyelocytic leukemia (PML) bodies continued to be generated, indicating that telomerase activity induced by exogenous hTERT did not abolish the ALT mechanism. In contrast, when the GM847 cell line was fused with two different telomerase-positive tumor cell lines, the ALT phenotype was repressed in each case. These hybrid cells were telomerase positive, and the telomeres decreased in length, very rapidly at first and then at the rate seen in telomerase-negative normal cells. Additionally, ALT-associated PML bodies disappeared. After the telomeres had shortened sufficiently, they were maintained at a stable length by telomerase. Together these data indicate that the telomerase-positive cells contain a factor that represses the ALT mechanism but that this factor is unlikely to be telomerase. Further, the transfection data indicate that ALT and telomerase can coexist in the same cells.  相似文献   

5.
6.
Fifteen percent of tumors utilize recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. The mechanisms underlying ALT are unclear but involve several proteins involved in homologous recombination including the BLM helicase, mutated in Bloom''s syndrome, and the BRCA1 tumor suppressor. Cells deficient in either BLM or BRCA1 have phenotypes consistent with telomere dysfunction. Although BLM associates with numerous DNA damage repair proteins including BRCA1 during DNA repair, the functional consequences of BLM-BRCA1 association in telomere maintenance are not completely understood. Our earlier work showed the involvement of BRCA1 in different mechanisms of ALT, and telomere shortening upon loss of BLM in ALT cells. In order to delineate their roles in telomere maintenance, we studied their association in telomere metabolism in cells using ALT. This work shows that BLM and BRCA1 co-localize with RAD50 at telomeres during S- and G2-phases of the cell cycle in immortalized human cells using ALT but not in cells using telomerase to maintain telomeres. Co-immunoprecipitation of BRCA1 and BLM is enhanced in ALT cells at G2. Furthermore, BRCA1 and BLM interact with RAD50 predominantly in S- and G2-phases, respectively. Biochemical assays demonstrate that full-length BRCA1 increases the unwinding rate of BLM three-fold in assays using a DNA substrate that models a forked structure composed of telomeric repeats. Our results suggest that BRCA1 participates in ALT through its interactions with RAD50 and BLM.  相似文献   

7.
Telomere lengths are tightly regulated within a narrow range in normal human cells. Previous studies have extensively focused on how short telomeres are extended and have demonstrated that telomerase plays a central role in elongating short telomeres. However, much about the molecular mechanisms of regulating excessively long telomeres is unknown. In this report, we demonstrated that the telomerase enzymatic component, hTERT, plays a dual role in the regulation of telomere length. It shortens excessively long telomeres and elongates short telomeres simultaneously in one cell, maintaining the optimal telomere length at each chromosomal end for efficient protection. This novel hTERT-mediated telomere-shortening mechanism not only exists in cancer cells, but also in primary human cells. The hTERT-mediated telomere shortening requires hTERT’s enzymatic activity, but the telomerase RNA component, hTR, is not involved in that process. We found that expression of hTERT increases telomeric circular DNA formation, suggesting that telomere homologous recombination is involved in the telomere-shortening process. We further demonstrated that shelterin protein TPP1 interacts with hTERT and recruits hTERT onto the telomeres, suggesting that TPP1 might be involved in regulation of telomere shortening. This study reveals a novel function of hTERT in telomere length regulation and adds a new element to the current molecular model of telomere length maintenance.  相似文献   

8.
Telomere maintenance can occur in the presence of telomerase or in its absence, termed alternative lengthening of telomeres (ALT). ALT adds telomere repeats using recombination-based processes and DNA repair proteins that function in homologous recombination. Our previous work reported that the RecQ-like BLM helicase is required for ALT and that it unwinds telomeric substrates in vitro. WRN is also a RecQ-like helicase that shares many biochemical functions with BLM. WRN interacts with BLM, unwinds telomeric substrates, and co-localizes to ALT-associated PML bodies (APBs), suggesting that it may also be required for ALT processes. Using long-term siRNA knockdown of WRN in three ALT cell lines, we show that some, but not all, cell lines require WRN for telomere maintenance. VA-13 cells require WRN to prevent telomere loss and for the formation of APBs; Saos-2 cells do not. A third ALT cell line, U-2 OS, requires WRN for APB formation, however WRN loss results in p53-mediated apoptosis. In the absence of WRN and p53, U-2 OS cells undergo telomere loss for an intermediate number of population doublings (50–70), at which point they maintain telomere length even with the continued loss of WRN. WRN and the tumor suppressor BRCA1 co-localize to APBs in VA-13 and U-2 OS, but not in Saos-2 cells. WRN loss in U-2 OS is associated with a loss of BRCA1 from APBs. While the loss of WRN significantly increases telomere sister chromatid exchanges (T-SCE) in these three ALT cell lines, loss of both BRCA1 and WRN does not significantly alter T-SCE. This work demonstrates that ALT cell lines use different telomerase-independent maintenance mechanisms that variably require the WRN helicase and that some cells can switch from one mechanism to another that permits telomere elongation in the absence of WRN. Our data suggest that BRCA1 localization may define these mechanisms.  相似文献   

9.
Short telomeres have been shown to be preferentially elongated in both yeast and mouse models. We examined this in human cells, by utilising cells with large allelic telomere length differentials and observing the relative rates of elongation following the expression of hTERT. We observed that short telomeres are gradually elongated in the first 26 PDs of growth, whereas the longer telomeres displayed limited elongation in this period. Telomeres coalesced at similar lengths irrespective of their length prior to the expression of hTERT. These data indicate that short telomeres are marked for gradual elongation to a cell strain specific length threshold.  相似文献   

10.
Blagoev KB  Goodwin EH 《DNA Repair》2008,7(2):199-204
Telomerase-negative cancer cells show increased telomere sister chromatid exchange (T-SCE) rates, a phenomenon that has been associated with an alternative lengthening of telomeres (ALT) mechanism for maintaining telomeres in this subset of cancers. Here we examine whether or not T-SCE can maintain telomeres in human cells using a combinatorial model capable of describing how telomere lengths evolve over time. Our results show that random T-SCE is unlikely to be the mechanism of telomere maintenance of ALT human cells, but that increased T-SCE rates combined with a recently proposed novel mechanism of non-random segregation of chromosomes with long telomeres preferentially into the same daughter cell during cell division can stabilize chromosome ends in ALT cancers. At the end we discuss a possible experiment that can validate the findings of this study.  相似文献   

11.
12.
ALT- 端粒延长替代机制   总被引:1,自引:0,他引:1  
吴晓明  唐文如  罗瑛 《遗传》2009,31(12):1185-1191
端粒长度和结构的稳定与肿瘤及衰老的发生密切相关, 端粒维持机制是细胞增殖的必要条件, 端粒维持机制的激活是肿瘤细胞演化过程中的一个重要环节。这种端粒维持机制可能是通过重新激活端粒酶, 使细胞快速增殖。在端粒酶失活或不足的情况下, 也存在着一种或多种维持和增加端粒长度的机制, 统称为端粒延长替代机制(Alterative lengthening of telomere, ALT)。其特点包括: 具有不均一的端粒长度, 存在与ALT相关的PML小体(APBs)以及同源重组增加。ALT细胞内存在的ALT相关蛋白及异常活跃的同源重组为ALT机制的激活和维持提供了可能。文章综述了ALT的特征性表型、与端粒酶的相关性及其可能的发生机制。对ALT机制的深入研究将有利于阐明衰老与肿瘤之间的辩证关系。  相似文献   

13.
The activation of a telomere maintenance mechanism is required for cancer development in humans. While most tumors achieve this by expressing the enzyme telomerase, a fraction (5–15%) employs a recombination-based mechanism termed alternative lengthening of telomeres (ALT). Here we show that loss of the single-stranded DNA-binding protein replication protein A (RPA) in human ALT cells, but not in telomerase-positive cells, causes increased exposure of single-stranded G-rich telomeric DNA, cell cycle arrest in G2/M phase, accumulation of single-stranded telomeric DNA within ALT-associated PML bodies (APBs), and formation of telomeric aggregates at the ends of metaphase chromosomes. This study demonstrates differences between ALT cells and telomerase-positive cells in the requirement for RPA in telomere processing and implicates the ALT mechanism in tumor cells as a possible therapeutic target.  相似文献   

14.
Limitless reproductive potential is one of the hallmarks of cancer cells. This ability is due to the maintenance of telomeres, erosion of which causes cellular senescence or death. While most cancer cells activate telomerase, a telomere-elongating enzyme, it remains elusive as to why cancer cells often maintain shorter telomeres than the cells in the surrounding normal tissues. Here, we show that forced telomere elongation in cancer cells promotes their differentiation in vivo. We elongated the telomeres of human prostate cancer cells that possess short telomeres by enhancing their telomerase activity. The resulting cells had long telomeres and retained the ability to form tumors in nude mice. Strikingly, these tumors exhibited many duct-like structures and reduced N-cadherin expression, reminiscent of well-differentiated adenocarcinoma. These changes were caused by telomere elongation and not by enhanced telomerase activity. Gene expression profiling revealed that tumor formation was accompanied by the expression of innate immune system-related genes, which have been implicated in maintaining tumor cells in an undifferentiated state and poor-prognosis cancers. In tumors derived from the telomere-elongated cells, upregulation of such gene sets is not observed. Our observations suggest a functional contribution of short telomeres to tumor malignancy by regulation of cancer cell differentiation.  相似文献   

15.
16.
Some human cancers maintain telomeres using alternative lengthening of telomeres (ALT), a process thought to be due to recombination. In Kluyveromyces lactis mutants lacking telomerase, recombinational telomere elongation (RTE) is induced at short telomeres but is suppressed once telomeres are moderately elongated by RTE. Recent work has shown that certain telomere capping defects can trigger a different type of RTE that results in much more extensive telomere elongation that is reminiscent of human ALT cells. In this study, we generated telomeres composed of either of two types of mutant telomeric repeats, Acc and SnaB, that each alter the binding site for the telomeric protein Rap1. We show here that arrays of both types of mutant repeats present basally on a telomere were defective in negatively regulating telomere length in the presence of telomerase. Similarly, when each type of mutant repeat was spread to all chromosome ends in cells lacking telomerase, they led to the formation of telomeres produced by RTE that were much longer than those seen in cells with only wild-type telomeric repeats. The Acc repeats produced the more severe defect in both types of telomere maintenance, consistent with their more severe Rap1 binding defect. Curiously, although telomerase deletion mutants with telomeres composed of Acc repeats invariably showed extreme telomere elongation, they often also initially showed persistent very short telomeres with few or no Acc repeats. We suggest that these result from futile cycles of recombinational elongation and truncation of the Acc repeats from the telomeres. The presence of extensive 3′ overhangs at mutant telomeres suggests that Rap1 may normally be involved in controlling 5′ end degradation.  相似文献   

17.
18.
The expression of hTERT, the catalytic subunit of telomerase, immortalizes normal human urothelial cells (NHUC). Expression of a modified hTERT, without the ability to act in telomere maintenance, did not immortalize NHUC, confirming that effects at telomeres are required for urothelial immortalization. Previous studies indicate that inhibition of telomerase has an immediate effect on urothelial carcinoma (UC) cell line viability, before sufficient divisions to account for telomere attrition, implicating non-telomere effects of telomerase in UC. We analyzed the effects of telomerase on gene expression in isogenic mortal and hTERT-transduced NHUC. hTERT expression led to consistent alterations in the expression of genes predicted to be of phenotypic significance in tumorigenesis. A subset of expression changes were detected soon after transduction with hTERT and persisted with continued culture. These genes (NME5, PSCA, TSPYL5, LY75, IGFBP2, IGF2, CEACAM6, XG, NOX5, KAL1, and HPGD) include eight previously identified as polycomb group targets. TERT-NHUC showed overexpression of the polycomb repressor complex (PRC1 and PRC4) components, BMI1 and SIRT1, and down-regulation of multiple PRC targets and genes associated with differentiation. TERT-NHUC at 100 population doublings, but not soon after transduction, showed increased saturation density and an attenuated differentiation response, indicating that these are not acute effects of telomerase expression. Some of the changes in gene expression identified may contribute to tumorigenesis. Expression of NME5 and NDN was down-regulated in UC cell lines and tumors. Our data supports the concept of both telomere-based and non-telomere effects of telomerase and provides further rationale for the use of telomerase inhibitors in UC.  相似文献   

19.
Telomerase is the enzyme responsible for maintenance of the length of telomeres by addition of guanine-rich repetitive sequences. Telomerase activity is exhibited in gametes and stem and tumor cells. In human somatic cells proliferation potential is strictly limited and senescence follows approximately 50–70 cell divisions. In most tumor cells, on the contrary, replication potential is unlimited. The key role in this process of the system of the telomere length maintenance with involvement of telomerase is still poorly studied. No doubt, DNA polymerase is not capable to completely copy DNA at the very ends of chromosomes; therefore, approximately 50 nucleotides are lost during each cell cycle, which results in gradual telomere length shortening. Critically short telomeres cause senescence, following crisis, and cell death. However, in tumor cells the system of telomere length maintenance is activated. Besides catalytic telomere elongation, independent telomerase functions can be also involved in cell cycle regulation. Inhibition of the telomerase catalytic function and resulting cessation of telomere length maintenance will help in restriction of tumor cell replication potential. On the other hand, formation of temporarily active enzyme via its intracellular activation or due to stimulation of expression of telomerase components will result in telomerase activation and telomere elongation that can be used for correction of degenerative changes. Data on telomerase structure and function are summarized in this review, and they are compared for evolutionarily remote organisms. Problems of telomerase activity measurement and modulation by enzyme inhibitors or activators are considered as well.  相似文献   

20.
A prerequisite for cellular immortalization in human cells is the elongation of telomeres through the upregulation of telomerase or by the alternative lengthening of telomeres (ALT) pathway. In this study, telomere structure in multiple ALT cell lines was examined by electron microscopy. Nuclei were isolated from GM847, GM847-Tert, and WI-38 VA13 ALT cells, psoralen photo-cross-linked in situ, and the telomere restriction fragments were purified by gel filtration chromatography. Examination of telomere-enriched fractions revealed frequent extrachromosomal circles, ranging from 0.7 to 56.8 kb. t-loops were also observed, with the loop portion ranging from 0.5 to 70.2 kb. The total length of the loop plus tail of the t-loops corresponded to the telomere restriction fragment length from the ALT cell lines as determined by pulsed-field gel electrophoresis. The presence of extrachromosomal circles containing telomeric DNA was confirmed by two-dimensional pulsed-field gel electrophoresis. These results show that extrachromosomal telomeric DNA circles are present in ALT nuclei and suggest a roll-and-spread mechanism of telomere elongation similar to that seen in previous observations of multiple yeast species. Results presented here also indicate that expression of telomerase in GM847 cells does not affect t-loop or extrachromosomal circle formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号