首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental change has a wide range of ecological consequences, including species extinction and range expansion. Many studies have shown that insect species respond rapidly to climatic change. A mountain pine beetle epidemic of record size in North America has led to unprecedented mortality of lodgepole pine, and a significant range expansion to the northeast of its historic range. Our goal was to determine the spatial genetic variation found among outbreak population from which genetic structure, and dispersal patterns may be inferred. Beetles from 49 sampling locations throughout the outbreak area in western Canada were analysed at 13 microsatellite loci. We found significant north-south population structure as evidenced by: (i) Bayesian-based analyses, (ii) north-south genetic relationships and diversity gradients; and (iii) a lack of isolation-by-distance in the northernmost cluster. The north-south structure is proposed to have arisen from the processes of postglacial colonization as well as recent climate-driven changes in population dynamics. Our data support the hypothesis of multiple sources of origin for the outbreak and point to the need for population specific information to improve our understanding and management of outbreaks. The recent range expansion across the Rocky Mountains into the jack/lodgepole hybrid and pure jack pine zones of northern Alberta is consistent with a northern British Columbia origin. We detected no loss of genetic variability in these populations, indicating that the evolutionary potential of mountain pine beetle to adapt has not been reduced by founder events. This study illustrates a rapid range-wide response to the removal of climatic constraints, and the potential for range expansion of a regional population.  相似文献   

2.
The contemporary genetic structure of species offers key imprints of how organisms responded to past geological and climatic events, which have played a crucial role in shaping the current geographical distribution of north-temperate organisms. In this study, range-wide patterns of genetic variation were examined in Douglas-fir (Pseudotsuga menziesii), a dominant forest tree species distributed from Mexico to British Columbia in western North America. Two organelle DNA markers with contrasting modes of inheritance were genotyped for 613 individuals from 44 populations. Two mitotypes and 42 chlorotypes were recovered in this survey. Both genomes showed significant population subdivision, indicative of limited gene flow through seeds and pollen. Three distinct cpDNA lineages corresponding to the Pacific Coast, the Rocky Mountains, and Mexico were observed. The split time of the two lineages from the Rockies lineage was dated back to 8.5 million years (Ma). The most recent common ancestors of Mexican and coastal populations were estimated at 3.2 and 4.8 Ma, respectively. The northern populations of once glaciated regions were characterized by a high level of genetic diversity, indicating a large zone of contact between ancestral lineages. A possible northern refugium was also inferred. The Mexican lineage, which appeared established by southward migration from the Rockies lineage, was characterized by the lowest genetic diversity but highest population differentiation. These results suggest that the effects of Quaternary climatic oscillations on the population dynamics and genetic diversity of Douglas-fir varied substantially across the latitudinal section. The results emphasize the pressing need for the conservation of Mexican Douglas-fir.  相似文献   

3.
Phylogeographic studies provide an important framework for investigating the mechanisms operating during the earliest stages of speciation, as reproductive barriers can be examined among divergent lineages in a geographic context. We investigated the evolution of early stages of intrinsic postmating isolation among different populations and lineages of Epidendrum denticulatum, a Neotropical orchid distributed across different biomes in South America. We estimated genetic diversity and structure for both nuclear and plastid markers, using a haplotype network, differentiation tests, Bayesian assignment analysis, and divergence time estimates of the main lineages. Reproductive barriers among divergent lineages were examined by analyzing seed viability following reciprocal crossing experiments. Strong plastid phylogeographic structure was found, indicating that E. denticulatum was restricted to multiple refuges during South American forest expansion events. In contrast, significant phylogeographic structure was not found for nuclear markers, suggesting higher gene flow by pollen than by seeds. Large asymmetries in seed set were observed among different plastid genetic groups, suggesting the presence of polymorphic genic incompatibilities associated with cytonuclear interactions. Our results confirm the importance of phylogeographic studies associated with reproductive isolation experiments and suggest an important role for outbreeding depression during the early stages of lineage diversification.  相似文献   

4.
The Indonesian-Australian Archipelago is the center of the world's marine biodiversity. Although many biogeographers have suggested that this region is a "center of origin," criticism of this theory has focused on the absence of processes promoting lineage diversification in the center. In this study we compare patterns of phylogeographic structure and gene flow in three codistributed, ecologically similar Indo-West Pacific stomatopod (mantis shrimp) species. All three taxa show evidence for limited gene flow across the Maluku Sea with deep genetic breaks between populations from Papua and Northern Indonesia, suggesting that limited water transport across the Maluku Sea may limit larval dispersal and gene flow across this region. All three taxa also show moderate to strong genetic structure between populations from Northern and Southern Indonesia, indicating limited gene flow across the Flores and Java Seas. Despite the similarities in phylogeographic structure, results indicate varied ages of the genetic discontinuities, ranging from the middle Pleistocene to the Pliocene. Concordance of genetic structure across multiple taxa combined with temporal discordance suggests that regional genetic structures have arisen from the action of common physical processes operating over extended time periods. The presence in all three species of both intraspecific genetic structure as well as deeply divergent lineages that likely represent cryptic species suggests that these processes may promote lineage diversification within the Indonesian-Australian Archipelago, providing a potential mechanism for the center of origin. Efforts to conserve biodiversity in the Coral Triangle should work to preserve both existing biodiversity as well as the processes creating the biodiversity.  相似文献   

5.
The largest forest pest epidemic in Canadian history caused by the mountain pine beetle (MPB) and its fungal associates has killed over 15 million hectares of forest. Sixty simple sequence repeat regions were identified from Grosmannia clavigera, an MPB associated fungus. Eight loci genotyped in 53 isolates from two populations in British Columbia, Canada revealed three to 10 alleles per locus and gene diversities of 0 to 0.79. All but two of these loci showed length polymorphism in Leptographium longiclavatum, a related MPB fungal associate. These microsatellites will be useful in population genetic studies of these fungi.  相似文献   

6.
Phylogeographic patterns of intraspecific variation can provide insights into the population-level processes responsible for speciation and yield information useful for conservation purposes. To examine phylogeography and population structure in a migratory passerine bird at both continental and regional geographical scales, we analysed 344 bp of mitochondrial DNA (mtDNA) control region sequence from 155 yellow warblers (Dendroica petechia) collected from seven locations across Canada and from Alaska. There is a major subdivision between eastern (Manitoba to Newfoundland) and western (Alaska and British Columbia) populations which appears to have developed during the recent Pleistocene. Some localities within these two regions also differ significantly in their genetic composition, suggesting further subdivision on a regional geographical scale. Eastern and western birds form distinct phylogeographic entities and the clustering of all western haplotypes with two eastern haplotypes suggests that the western haplotypes may be derived from an eastern lineage. Analyses based on coalescent models support this explanation for the origin of western haplotypes. These results are consistent with important features of Mengel's model of warbler diversification. From a conservation perspective they also suggest that individual populations of migrant birds may form demographically isolated management units on a smaller scale than previously appreciated.  相似文献   

7.
Bighorn sheep (Ovis canadensis) populations in the western United States have undergone widespread declines and extirpations since the late nineteenth century as a consequence of introduced diseases, competition with livestock, and unregulated hunting. Washington, Idaho, USA, and British Columbia, Canada were historically thought to be occupied by 2 bighorn lineages or subspecies: Rocky Mountain (O. c. canadensis) and California (O. c. californiana). The putative California lineage was completely extirpated in the United States, and reintroductions to reestablish populations were sourced directly or indirectly from a single region in southern British Columbia. Restoration efforts have attempted to maintain the diversity and divergence of these 2 lineages, sometimes referred to as subspecies although taxonomic classifications have changed over time. In this study we describe genetic variation in a subset of native and reintroduced herds of California and Rocky Mountain bighorn sheep. We examined genetic diversity and divergence between bighorn sheep herds using 15 microsatellite loci, including 4 loci linked to genes involved in immune function. We analyzed 504 samples from reintroduced herds in Washington (n = 10 California herds, n = 4 Rocky Mountain herds) and Idaho (n = 5 California), and source herds in Oregon (n = 1 Rocky Mountain) and British Columbia (n = 5 California, 1 Rocky Mountain). Genetic structure reflected known reintroduction history, and geographic proximity also was associated with decreased genetic divergence. Herds in Washington and Idaho sourced from California bighorn sheep were less genetically diverse than those sourced from Rocky Mountain herds. Also, levels of relatedness within and across California herds were higher than in Rocky Mountain herds and similar to what would be expected for full and half siblings. Lower diversity and higher relatedness among California herds is a concern for long-term fitness and likely related to past population bottlenecks, fewer source populations, and management history, such as entirely sourcing California herds from British Columbia. Genetic divergence of neutral loci between California and Rocky Mountain herds was greater than that of adaptive loci, potentially indicating that balancing selection has maintained similar genetic diversity across lineages in loci associated with immune and other adaptive functions. Thus, we recommend future reintroductions and augmentations should continue to use source populations from the appropriate California or Rocky Mountain lineage to avoid potential outbreeding depression and maintain possible adaptive differences. This could be accomplished by obtaining sheep from ≥1 source within the genetic lineage, while avoiding sourcing from admixed herds. Future work encompassing a broader geographic sampling of populations and a greater portion of the genome is necessary to better evaluate the degree to which contemporary divergence between lineages is associated with recent founder effects and genetic isolation or evolutionary adaptation. © 2021 The Wildlife Society  相似文献   

8.
Northern Goshawks occupying the Alexander Archipelago, Alaska, and coastal British Columbia nest primarily in old-growth and mature forest, which results in spatial heterogeneity in the distribution of individuals across the landscape. We used microsatellite and mitochondrial data to infer genetic structure, gene flow, and fluctuations in population demography through evolutionary time. Patterns in the genetic signatures were used to assess predictions associated with the three population models: panmixia, metapopulation, and isolated populations. Population genetic structure was observed along with asymmetry in gene flow estimates that changed directionality at different temporal scales, consistent with metapopulation model predictions. Therefore, Northern Goshawk assemblages located in the Alexander Archipelago and coastal British Columbia interact through a metapopulation framework, though they may not fit the classic model of a metapopulation. Long-term population sources (coastal mainland British Columbia) and sinks (Revillagigedo and Vancouver islands) were identified. However, there was no trend through evolutionary time in the directionality of dispersal among the remaining assemblages, suggestive of a rescue–effect dynamic. Admiralty, Douglas, and Chichagof island complex appears to be an evolutionarily recent source population in the Alexander Archipelago. In addition, Kupreanof island complex and Kispiox Forest District populations have high dispersal rates to populations in close geographic proximity and potentially serve as local source populations. Metapopulation dynamics occurring in the Alexander Archipelago and coastal British Columbia by Northern Goshawks highlight the importance of both occupied and unoccupied habitats to long-term population persistence of goshawks in this region.  相似文献   

9.
Calcrete aquifers from the Yilgarn region of arid central Western Australia contain an assemblage of obligate groundwater invertebrate species that are each endemic to single aquifers. Fine-scale phylogeographic and population genetic analyses of three sympatric and independently derived species of amphipod (Chiltoniidae) were carried out to determine whether there were common patterns of population genetic structure or evidence for past geographic isolation of populations within a single calcrete aquifer. Genetic diversity in amphipod mitochondrial DNA (cytochrome c oxidase subunit I gene) and allozymes were examined across a 3.5 km2 region of the Sturt Meadows calcrete, which contains a grid of 115 bore holes (=wells). Stygobiont amphipods were found to have high levels of mitochondrial haplotype diversity coupled with low nucleotide diversity. Mitochondrial phylogeographic structuring was found between haplogroups for one of the chiltoniid species, which also showed population structuring for nuclear markers. Signatures of population expansion in two of the three species, match previous findings for diving beetles at the same site, indicating that the system is dynamic. We propose isolation of populations in refugia within the calcrete, followed by expansion events, as the most likely source of intraspecific genetic diversity, due to changes in water level influencing gene flow across the calcrete.  相似文献   

10.
Like many species, the Mormon Metalmark butterfly (Apodemia mormo) has been given conservation ranking in Canada based on limited data. This species is widespread across western North America, but has only two populations in Canada: an “endangered” population in the Similkameen valley of British Columbia, and a “threatened” population in Grasslands National Park (GNP) in Saskatchewan. Here we present genetic data from 1498 base pairs of the cytochrome oxidase I gene sequence and six novel microsatellite loci in order to assess (1) whether the two populations are related, (2) the degree to which they are genetically diverse and demographically stable, and (3) what their relationships are to the nearest unranked populations of A. mormo across the Canada-United States border. Our principal conclusion is that the two populations are not closely related genetically. We also found that the British Columbia population is genetically depauperate and, with the exception of the nearest neighboring populations across the border, not recently genetically connected to other populations in the Pacific Northwest. In comparison, the Saskatchewan population is genetically diverse, and gene flow occurs with several other eastern populations. Population structure was not detected within either the British Columbia or the Saskatchewan populations. This research supports the prior conservation rankings of both populations and provides new insight that will help to inform future management decisions for the Canadian populations of this charismatic butterfly.  相似文献   

11.
Over 18 million ha of forests have been destroyed in the past decade in Canada by the mountain pine beetle (MPB) and its fungal symbionts. Understanding their population dynamics is critical to improving modeling of beetle epidemics and providing potential clues to predict population expansion. Leptographium longiclavatum and Grosmannia clavigera are fungal symbionts of MPB that aid the beetle to colonize and kill their pine hosts. We investigated the genetic structure and demographic expansion of L. longiclavatum in populations established within the historic distribution range and in the newly colonized regions. We identified three genetic clusters/populations that coincide with independent geographic locations. The genetic profiles of the recently established populations in northern British Columbia (BC) and Alberta suggest that they originated from central and southern BC. Approximate Bayesian Computation supports the scenario that this recent expansion represents an admixture of individuals originating from BC and the Rocky Mountains. Highly significant correlations were found among genetic distance matrices of L. longiclavatum, G. clavigera, and MPB. This highlights the concordance of demographic processes in these interacting organisms sharing a highly specialized niche and supports the hypothesis of long-term multipartite beetle-fungus co-evolutionary history and mutualistic relationships.  相似文献   

12.
We investigated the population structure of Grosmannia clavigera (Gc), a fungal symbiont of the mountain pine beetle (MPB) that plays a crucial role in the establishment and reproductive success of this pathogen. This insect-fungal complex has destroyed over 16 million ha of lodgepole pine forests in Canada, the largest MPB epidemic in recorded history. During this current epidemic, MPB has expanded its range beyond historically recorded boundaries, both northward and eastward, and has now reached the jack pine of Alberta, potentially threatening the Canadian boreal forest. To better understand the dynamics between the beetle and its fungal symbiont, we sampled 19 populations in western North America and genotyped individuals from these populations with eight microsatellite markers. The fungus displayed high haplotype diversity, with over 250 unique haplotypes observed in 335 single spore isolates. Linkage equilibria in 13 of the 19 populations suggested that the fungus reproduces sexually. Bayesian clustering and distance analyses identified four genetic clusters that corresponded to four major geographical regions, which suggested that the epidemic arose from multiple geographical sources. A genetic cluster north of the Rocky Mountains, where the MPB has recently become established, experienced a population bottleneck, probably as a result of the recent range expansion. The two genetic clusters located north and west of the Rocky Mountains contained many fungal isolates admixed from all populations, possibly due to the massive movement of MPB during the epidemic. The general agreement in north-south differentiation of MPB and G. clavigera populations points to the fungal pathogen's dependence on the movement of its insect vector. In addition, the patterns of diversity and the individual assignment tests of the fungal associate suggest that migration across the Rocky Mountains occurred via a northeastern corridor, in accordance with meteorological patterns and observation of MPB movement data. Our results highlight the potential of this pathogen for both expansion and sexual reproduction, and also identify some possible barriers to gene flow. Understanding the ecological and evolutionary dynamics of this fungus-beetle association is important for the modelling and prediction of MPB epidemics.  相似文献   

13.
China has numerous native domestic goat breeds, but so far there has been no extensive study on genetic diversity, population demographic history, and origin of Chinese goats. Here, we examined the genetic diversity and phylogeographic structure of Chinese domestic goats by determining a 481-bp fragment of the first hypervariable region of mitochondrial DNA (mtDNA) control region from 368 individuals representing 18 indigenous breeds. Phylogenetic analyses revealed that there were four mtDNA lineages (A-D) identified in Chinese goats, in which lineage A was predominant, lineage B was moderate, and lineages C and D were at low frequency. These results further support the multiple maternal origins of domestic goats. The pattern of genetic variation in goat mtDNA sequences indicated that the two larger lineages A and B had undergone population expansion events. In a combined analysis of previously reported sequences and our sequences belonging to lineage B, we detected two subclades, in which one was unique to eastern Asia and another was shared between eastern and southern Asia. A larger genetic variation in eastern Asia than southern Asia and the pattern of phylogeographic variation in lineage B suggest that at least one subclade of lineage B originated from eastern Asia. There was no significant geographical structuring in Chinese goat populations, which suggested that there existed strong gene flow among goat populations caused by extensive transportation of goats in history.  相似文献   

14.
Vicariance and dispersal can strongly influence population genetic structure and allopatric speciation, but their importance in the origin of marine biodiversity is unresolved. In transitional estuarine environments, habitat discreteness and dispersal barriers could enhance divergence and provide insight to evolutionary mechanisms underlying marine and freshwater biodiversity. We examined this by assessing phylogeographic structure in the widespread amphipod Gammarus tigrinus across 13 estuaries spanning its northwest Atlantic range from Quebec to Florida. Mitochondrial cytochrome c oxidase I and nuclear internal transcribed spacer 1 phylogenies supported deep genetic structure consistent with Pliocene separation and cryptic northern and southern species. This break occurred across the Virginian-Carolinian coastal biogeographic zone, where an oceanographic discontinuity may restrict gene flow. Ten estuarine populations of the northern species occurred in four distinct clades, supportive of Pleistocene separation. Glaciation effects on genetic structure of estuarine populations are largely unknown, but analysis of molecular variance (AMOVA) supported a phylogeographic break among clades in formerly glaciated versus nonglaciated areas across Cape Cod, Massachusetts. This finding was concordant with patterns in other coastal species, though there was no significant relationship between latitude and genetic diversity. This supports Pleistocene vicariance events and divergence of clades in different northern glacial refugia. AMOVA results and private haplotypes in most populations support an allopatric distribution across estuaries. Clade mixture zones are consistent with historical colonization and human-mediated transfer. An isolation-by-distance model of divergence was detected after we excluded a suspected invasive haplotype in the St. Lawrence estuary. The occurrence of cryptic species and divergent population structure support limited dispersal, dispersed habitat distribution, and historical factors as important determinants of estuarine speciation and diversification.  相似文献   

15.
Some South American poison frogs (Dendrobatidae) are chemically defended and use bright aposematic colors to warn potential predators of their unpalatability. Aposematic signals are often frequency‐dependent where individuals deviating from a local model are at a higher risk of predation. However, extreme diversity in the aposematic signal has been documented in poison frogs, especially in Oophaga. Here, we explore the phylogeographic pattern among color‐divergent populations of the Little Devil poison frog Oophaga sylvatica by analyzing population structure and genetic differentiation to evaluate which processes could account for color diversity within and among populations. With a combination of PCR amplicons (three mitochondrial and three nuclear markers) and genome‐wide markers from a double‐digested RAD (ddRAD) approach, we characterized the phylogenetic and genetic structure of 199 individuals from 13 populations (12 monomorphic and 1 polymorphic) across the O. sylvatica distribution. Individuals segregated into two main lineages by their northern or southern latitudinal distribution. A high level of genetic and phenotypic polymorphism within the northern lineage suggests ongoing gene flow. In contrast, low levels of genetic differentiation were detected among the southern lineage populations and support recent range expansions from populations in the northern lineage. We propose that a combination of climatic gradients and structured landscapes might be promoting gene flow and phylogenetic diversification. Alternatively, we cannot rule out that the observed phenotypic and genomic variations are the result of genetic drift on near or neutral alleles in a small number of genes.  相似文献   

16.
Li X  Yin H  Li K  Gao X 《Zoological science》2012,29(4):238-246
The population genetic structure and demographic history of the ground beetle Pheropsophus jessoensis (Coleoptera: Carabidae) from the Tsinling-Dabashan Mountains, central China were estimated using the mtDNACol-tRNALeu-mtDNAColl region as a molecular marker. 184 individuals from 25 local populations, were collected. The haplotype diversity (H(d)) of total and each individual sampled population was high, and was accompanied by lower nucleotide diversity (P(i)). AMOVA analysis suggested that most of the variation was within populations (92.17%), while differentiation of among populations only contributed 7.83% to the total. Mantel test results showed significant correlation between the pairwise calculated genetic distance and pairwise calculated geographical distance of the populations (R(xy) = 0.360529, P = 0.00001 < 0.01), indicating the presence of isolationby-distance. No phylogeographic structure was found within the Tsinling-Dabashan Mountains region. Statistical phylogeographic analysis indicated that the contemporary populations are derived from multiple ancestral-refugial source populations. Gene flow calculated through the N(m) was high between many pairs of populations, which was probably due to ancient vicariance and subsequent rapid expansion of populations. The results of neutral test, mismatch distribution analyses, and Bayesian Skyline Plot (BSP) analysis together indicated a sudden demographic expansion. The estimated expansion time of individual haplogroup and the whole sampled population were 0.012-0.278 Myr, and a sudden expansion was identified between 0.05 Myr to 0.01 Myr by BSP. The postglacial population expansion might lead to the lack of phylogeographic structure.  相似文献   

17.
To assess genetic diversity in the blue-listed purple martin (Progne subis) population in British Columbia, we analysed mitochondrial control region sequences of 93 individuals from British Columbia and 121 individuals collected from seven localities of the western and eastern North American subspecies P. s. arboricola and P. s. subis, respectively. Of the 47 haplotypes we detected, 34 were found exclusively in western populations, and 12 were found only in eastern populations. The most common eastern haplotype (25) was also found in three nestlings in British Columbia and one in Washington. Another British Columbia nestling had a haplotype (35) that differed by a C to T transition from haplotype 25. Coalescent analysis indicated that these five nestlings are probably descendents of recent immigrants dispersing from east to the west, because populations were estimated to have diverged about 200,000–400,000 ybp, making ancestral polymorphism a less likely explanation. Maximum likelihood estimates of gene flow among all populations detected asymmetrical gene flow into British Columbia not only of rare migrants from the eastern subspecies in Alberta but also a substantial number of migrants from the adjacent Washington population, and progressively lower numbers from Oregon in an isolation-by distance pattern. The influx of migrants from different populations is consistent with the migrant-pool model of recolonization which has maintained high genetic diversity in the small recovering population in British Columbia. Thus, the risk to this population is not from genetic erosion or inbreeding following a severe population crash, but from demographic stochasticity and extinction in small populations.  相似文献   

18.
Eruptive herbivores can exert profound landscape level influences. For example, the ongoing mountain pine beetle outbreak in British Columbia, Canada, has resulted in mortality of mature lodgepole pine over >7 million ha. Analysis of the spatio‐temporal pattern of spread can lend insights into the processes initiating and/or sustaining such phenomena. We present a landscape level analysis of the development of the current outbreak. Aerial survey assessments of tree mortality, projected onto discrete 12×12 km cells, were used as a proxy for insect population density. We examined whether the outbreak potentially originated from an epicenter and spread, or whether multiple localized populations erupted simultaneously at spatially disjunct locations. An aspatial cluster analysis of time series from 1990 to 2003 revealed four distinct time series patterns. Each time series demonstrated a general progression of increasing mountain pine beetle populations. Plotting the geographical locations of each temporal pattern revealed that the outbreak occurred first in an area of west‐central British Columbia, and then in an area to the east. The plot further revealed many localized infestations erupted in geographically disjunct areas, especially in the southern portion of the province. Autologistic regression analyses indicated a significant, positive association between areas where the outbreak first occurred and conservation lands. For example, the delineated area of west‐central British Columbia is comprised of three conservation parks and adjacent working forest. We further examined how population synchrony declines with distance at different population levels. Examination of the spatial dependence of temporal synchrony in population fluctuations during early, incipient years (i.e. 1990–1996) suggested that outbreaking mountain pine beetle populations are largely independent at scales >200 km during non‐epidemic periods. However, during epidemic years (i.e. 1999–2003), populations were clearly synchronous across the entire province, even at distances of up to 900 km. The epicentral pattern of population development can be used to identify and prioritize adjacent landscape units for both reactive and proactive management strategies intended to minimize mountain pine beetle impacts.  相似文献   

19.
Eurasian badgers, Meles meles, have been shown to possess limited genetic population structure within Europe; however, field studies have detected high levels of philopatry, which are expected to increase population structure. Population structure will be a consequence of both contemporary dispersal and historical processes, each of which is expected to be evident at a different scale. Therefore, to gain a greater understanding of gene flow in the badger, we examined microsatellite diversity both among and within badger populations, focusing on populations from the British Isles and western Europe. We found that while populations differed in their allelic diversity, the British Isles displayed a similar degree of diversity to the rest of western Europe. The lower genetic diversity occurring in Ireland, Norway and Scotland was more likely to have resulted from founder effects rather than contemporary population density. While there was significant population structure (F ST = 0.19), divergence among populations was generally well explained by geographic distance (P < 0.0001) across the entire range studied of more than 3000 km. Transient effects from the Pleistocene appear to have been replaced by a strong pattern of genetic isolation by distance across western Europe, suggestive of colonization from a single refugium. Analysis of individuals within British populations through Mantel tests and spatial autocorrelation demonstrated that there was significant local population structure across 3-30 km, confirming that dispersal is indeed restricted. The isolation by distance observed among badger populations across western Europe is likely to be a consequence of this restricted local dispersal.  相似文献   

20.
Chromosomal rearrangement can be an important mechanism driving population differentiation and incipient speciation. In the mountain pine beetle (MPB, Dendroctonus ponderosae), deletions on the Y chromosome that are polymorphic among populations are associated with reproductive incompatibility. Here, we used RAD sequencing across the entire MPB range in western North America to reveal the extent of the phylogeographic differences between Y haplotypes compared to autosomal and X‐linked loci. Clustering and geneflow analyses revealed three distinct Y haplogroups geographically positioned within and on either side of the Great Basin Desert. Despite close geographic proximity between populations on the boundaries of each Y haplogroup, there was extremely low Y haplogroup mixing among populations, and gene flow on the autosomes was reduced across Y haplogroup boundaries. These results are consistent with a previous study suggesting that independent degradation of a recently evolved neo‐Y chromosome in previously isolated populations causes male sterility or inviability among Y haplotype lineages. Phylogeographic results supported historic contraction of MPB into three separate Pleistocene glacial refugia followed by postglacial range expansion and secondary contact. Distinct sets of SNPs were statistically associated with environmental data among the most genetically distinct sets of geographic populations. This finding suggests that the process of adaptation to local climatic conditions is influenced by population genetic structure, with evidence for largely independent evolution in the most genetically isolated Y haplogroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号