首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The class Ia antiarrhythmic agent disopyramide blocks native ATP-sensitive K+ (K(ATP)) channels at micromolar concentrations. The K(ATP) channel is a complex of a pore-forming inwardly rectifying K+ channel (Kir6.2) and a sulfonylurea receptor (SUR). The aim of the present study was to further localize the site of action of disopyramide. We have used a C-terminal truncated form of Kir6.2 (Kir6.2delta26), which--in contrast to Kir6.2--expresses independently of SUR. Kir6.2delta26 channels were expressed in African green monkey kidney COS-7 cells, and enhanced green fluorescent protein (EGFP) cDNA was used as a reporter gene. EGFP fluorescence was visualized by a laser scanning confocal microscope. Disopyramide applied to the cytoplasmic membrane surface of inside-out patches inhibited Kir6.2delta26 channels half-maximally at 7.1 microM (at pH 7.15). Lowering the intracellular pH to 6.5 potentiated the inhibition of Kir6.2delta26 channels by disopyramide. These observations suggest that disopyramide directly blocks the pore-forming Kir6.2 subunit, in particular at reduced intracellular pH values that occur under cardiac ischaemia.  相似文献   

2.
Cholesterol is a critical regulator of lipid bilayer dynamics and plasma membrane organization in eukaryotes. A variety of ion channels have been shown to be modulated by cellular cholesterol and partition into cholesterol-enriched membrane rafts. However, very little is known about functional role of membrane cholesterol in regulation of mechanically gated channels that are ubiquitously present in living cells. In our previous study, the effect of methyl-beta-cyclodextrin (MbCD), cholesterol-sequestering agent, on Ca2+-permeable stretch-activated cation channels (SACs) has been described. Here, cell-attached patch-clamp method was employed to search for the mechanisms of cholesterol-dependent regulation of SACs and to clarify functional contribution of lipid bilayer and submembranous cytoskeleton to channel gating. Cholesterol-depleting treatment with MbCD significantly decreased open probability of SACs whereas alpha-cyclodextrin had no effect. F-actin disassembly fully restored high level of SAC activity in cholesterol-depleted cells. Particularly, treatment with cytochalasin D or latrunculin B abrogated inhibitory effect of MbCD on stretch-activated currents. Single channel analysis and fluorescent imaging methods indicate that inhibition of SACs after cholesterol depletion is mediated via actin remodeling initiated by disruption of lipid rafts. Our data reveal a novel mechanism of channel regulation by membrane cholesterol and lipid rafts.  相似文献   

3.
Prolactin (PRL) playsa central role in the freshwater osmoregulation of teleost fish,including the tilapia (Oreochromis mossambicus). Consistentwith this action, PRL release from the tilapia pituitary increases asextracellular osmolality is reduced both in vitro and in vivo.Dispersed tilapia PRL cells were incubated in a perfusion chamber thatallowed simultaneous measurements of cell volume and PRL release.Intracellular Ca2+ concentrations were measured from fura2-loaded PRL cells treated in a similar way. Gadolinium(Gd3+), known to block stretch-activated cation channels,inhibited hyposmotically induced PRL release in a dose-related mannerwithout preventing cell swelling. Nifedipine, an L-typeCa2+ channel blocker, did not prevent the increase in PRLrelease during hyposmotic stimulation. A high, depolarizingconcentration of KCl induced a transient and marked increase ofintracellular Ca2+ and release of PRL but did not preventthe rise in intracellular Ca2+ and PRL release evoked byexposure to hyposmotic medium. These findings suggest that a decreasein extracellular osmolality stimulates PRL release through the openingof stretch-activated ion channels, which allow extracellularCa2+ to enter the cell when it swells.

  相似文献   

4.
K(+)-channels fulfill several important functions in the mammalian kidney such as volume regulation, recirculation and secretion of K(+) ions, and maintaining the resting potential. In this study we used immunocytochemical methods, in situ hybridization, and nephron segment-specific RT-PCR to obtain a detailed picture of the cellular localization of two tandem pore domain potassium (K(2P)) channels, THIK-1 (K(2P)13.1, KCNK13) and THIK-2 (K(2P)12.1, KCNK12). Monospecific antibodies against C-terminal domains of rat THIK-1 and THIK-2 proteins (GST-fusion proteins) were raised in rabbits, freed from cross-reactivity, and affinity purified. All antibodies were validated by Western blot analysis, competitive ELISA, and preabsorption experiments. The expression of THIK channels in specific nephron segments was confirmed by double staining with marker proteins. Results indicate that in rat and mouse THIK-1 and THIK-2 were expressed in the proximal tubule (PT), thick ascending limb (TAL), connecting tubule (CNT), and cortical collecting duct (CCD). In human kidney THIK-1 and THIK-2 were localized in PT, TAL and CCD. Immunostaining of rat tissue revealed an intracellular expression of THIK-1 and THIK-2 throughout the identified nephron segments. However in mouse kidney THIK-2 was identified in basolateral membranes. Overall, the glomerulus, thin limbs and medullary collecting ducts were devoid of THIK-1 and THIK-2 signal. In summary, THIK-1 and THIK-2 are abundantly expressed in the proximal and distal nephron of the mammalian kidney.  相似文献   

5.
Neutrophils undergo rapid constitutive apoptosis that is delayed by a range of pathogen- and host-derived inflammatory mediators. We have investigated the ability of the nucleotide ATP, to which neutrophils are exposed both in the circulation and at sites of inflammation, to modulate the lifespan of human neutrophils. We found that physiologically relevant concentrations of ATP cause a concentration-dependent delay of neutrophil apoptosis (assessed by morphology, annexin V/To-Pro3 staining, and mitochondrial membrane permeabilization). We found that even brief exposure to ATP (10 min) was sufficient to cause a long-lasting delay of apoptosis and showed that the effects were not mediated by ATP breakdown to adenosine. The P2 receptor mediating the antiapoptotic actions of ATP was identified using a combination of more selective ATP analogs, receptor expression studies, and study of downstream signaling pathways. Neutrophils were shown to express the P2Y11 receptor and inhibition of P2Y11 signaling using the antagonist NF157 abrogated the ATP-mediated delay of neutrophil apoptosis, as did inhibition of type I cAMP-dependent protein kinases activated downstream of P2Y11, without effects on constitutive apoptosis. Specific targeting of P2Y11 could retain key immune functions of neutrophils but reduce the injurious effects of increased neutrophil longevity during inflammation.  相似文献   

6.
Hydrogen peroxide (H(2)O(2)) is a proposed endothelium-derived hyperpolarizing factor and metabolic vasodilator of the coronary circulation, but its mechanisms of action on vascular smooth muscle remain unclear. Voltage-dependent K(+) (K(V)) channels sensitive to 4-aminopyridine (4-AP) contain redox-sensitive thiol groups and may mediate coronary vasodilation to H(2)O(2). This hypothesis was tested by studying the effect of H(2)O(2) on coronary blood flow, isometric tension of arteries, and arteriolar diameter in the presence of K(+) channel antagonists. Infusing H(2)O(2) into the left anterior descending artery of anesthetized dogs increased coronary blood flow in a dose-dependent manner. H(2)O(2) relaxed left circumflex rings contracted with 1 muM U46619, a thromboxane A(2) mimetic, and dilated coronary arterioles pressurized to 60 cmH(2)O. Denuding the endothelium of coronary arteries and arterioles did not affect the ability of H(2)O(2) to cause vasodilation, suggesting a direct smooth muscle mechanism. Arterial and arteriolar relaxation by H(2)O(2) was reversed by 1 mM dithiothreitol, a thiol reductant. H(2)O(2)-induced relaxation was abolished in rings contracted with 60 mM K(+) and by 10 mM tetraethylammonium, a nonselective inhibitor of K(+) channels, and 3 mM 4-AP. Dilation of arterioles by H(2)O(2) was antagonized by 0.3 mM 4-AP but not 100 nM iberiotoxin, an inhibitor of Ca(2+)-activated K(+) channels. H(2)O(2)-induced increases in coronary blood flow were abolished by 3 mM 4-AP. Our data indicate H(2)O(2) increases coronary blood flow by acting directly on vascular smooth muscle. Furthermore, we suggest 4-AP-sensitive K(+) channels, or regulating proteins, serve as redox-sensitive elements controlling coronary blood flow.  相似文献   

7.
Two-pore-domain potassium (K(2P)) channels mediate K(+) background currents that stabilize the resting membrane potential and contribute to repolarization of action potentials in excitable cells. The functional significance of K(2P) currents in cardiac electrophysiology remains poorly understood. Danio rerio (zebrafish) may be utilized to elucidate the role of cardiac K(2P) channels in vivo. The aim of this work was to identify and functionally characterize a zebrafish otholog of the human K(2P)10.1 channel. K(2P)10.1 orthologs in the D. rerio genome were identified by database analysis, and the full zK(2P)10.1 coding sequence was amplified from zebrafish cDNA. Human and zebrafish K(2P)10.1 proteins share 61% identity. High degrees of conservation were observed in protein domains relevant for structural integrity and regulation. K(2P)10.1 channels were heterologously expressed in Xenopus oocytes, and currents were recorded using two-electrode voltage clamp electrophysiology. Human and zebrafish channels mediated K(+) selective background currents leading to membrane hyperpolarization. Arachidonic acid, an activator of hK(2P)10.1, induced robust activation of zK(2P)10.1. Activity of both channels was reduced by protein kinase C. Similar to its human counterpart, zK(2P)10.1 was inhibited by the antiarrhythmic drug amiodarone. In summary, zebrafish harbor K(2P)10.1 two-pore-domain K(+) channels that exhibit structural and functional properties largely similar to human K(2P)10.1. We conclude that the zebrafish represents a valid model to study K(2P)10.1 function in vivo.  相似文献   

8.
Dorsal root ganglion (DRG) neurons express mRNAs for many two-pore domain K+ (K2P) channels that behave as background K+ channels. To identify functional background K+ channels in DRG neurons, we examined the properties of single-channel openings from cell-attached and inside-out patches from the cell bodies of DRG neurons. We found seven types of K+ channels, with single-channel conductance ranging from 14 to 120 pS in 150 mM KCl bath solution. Four of these K+ channels showed biophysical and pharmacological properties similar to TRESK (14 pS), TREK-1 (112 pS), TREK-2 (50 pS), and TRAAK (73 pS), which are members of the K2P channel family. The molecular identity of the three other K+ channels could not be determined, as they showed low channel activity and were observed infrequently. Of the four K2P channels, the TRESK-like (14 pS) K+ channel was most active at 24°C. At 37°C, the 50-pS (TREK-2 like) channel was the most active and contributed the most (69%) to the resting K+ current, followed by the TRESK-like 14-pS (16%), TREK-1-like 112-pS (12%), and TRAAK-like 73-pS (3%) channels. In DRG neurons, mRNAs of all four K2P channels, as well as those of TASK-1 and TASK-3, were expressed, as judged by RT-PCR analysis. Our results show that TREKs and TRESK together contribute >95% of the background K+ conductance of DRG neurons at 37°C. As TREKs and TRESK are targets of modulation by receptor agonists, they are likely to play an active role in the regulation of excitability in DRG neurons. two-pore domain K+ channel; conductance; excitability  相似文献   

9.
Direct interactions of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) with inwardly rectifying potassium channels are stronger with channels rendered constitutively active by binding to PtdIns(4,5)P2, such as IRK1, than with G-protein-gated channels (GIRKs). As a result, PtdIns(4,5)P2 alone can activate IRK1 but not GIRKs, which require extra gating molecules such as the beta gamma subunits of G proteins or sodium ions. Here we identify two conserved residues near the inner-membrane interface of these channels that are critical in interactions with PtdIns(4,5)P2. Between these two arginines, a conservative change of isoleucine residue 229 in GIRK4 to the corresponding leucine found in IRK1 strengthens GIRK4-PtdIns(4,5)P2 interactions, eliminating the need for extra gating molecules. A negatively charged GIRK4 residue, two positions away from the most strongly interacting arginine, mediates stimulation of channel activity by sodium by strengthening channel-PtdIns(4,5)P2 interactions. Our results provide a mechanistic framework for understanding how distinct gating mechanisms of inwardly rectifying potassium channels allow these channels to subserve their physiological roles.  相似文献   

10.
Two-pore-domain potassium (K2P) channels mediate K+ background currents that stabilize the resting membrane potential and contribute to repolarization of action potentials in excitable cells. The functional significance of K2P currents in cardiac electrophysiology remains poorly understood. Danio rerio (zebrafish) may be utilized to elucidate the role of cardiac K2P channels in vivo. The aim of this work was to identify and functionally characterize a zebrafish otholog of the human K2P10.1 channel. K2P10.1 orthologs in the D. rerio genome were identified by database analysis, and the full zK2P10.1 coding sequence was amplified from zebrafish cDNA. Human and zebrafish K2P10.1 proteins share 61% identity. High degrees of conservation were observed in protein domains relevant for structural integrity and regulation. K2P10.1 channels were heterologously expressed in Xenopus oocytes, and currents were recorded using two-electrode voltage clamp electrophysiology. Human and zebrafish channels mediated K+ selective background currents leading to membrane hyperpolarization. Arachidonic acid, an activator of hK2P10.1, induced robust activation of zK2P10.1. Activity of both channels was reduced by protein kinase C. Similar to its human counterpart, zK2P10.1 was inhibited by the antiarrhythmic drug amiodarone. In summary, zebrafish harbor K2P10.1 two-pore-domain K+ channels that exhibit structural and functional properties largely similar to human K2P10.1. We conclude that the zebrafish represents a valid model to study K2P10.1 function in vivo.  相似文献   

11.
The P2X(3) receptor is an ATP-gated ion channel predominantly expressed in nociceptive neurons from the dorsal root ganglion. P2X(3) receptor channels are highly expressed in sensory neurons and probably contribute to the sensation of pain. Kinetics of P2X(3) currents are characterized by rapid desensitization (<100 ms) and slow recovery (>20 s). Thus, any mechanism modulating rate of desensitization and/or recovery may have profound effect on susceptibility of nociceptive neurons expressing P2X(3) to ATP. Here we show that currents mediated by P2X(3) receptor channels and the heteromeric channel P2X(2/3) composed of P2X(2) and P2X(3) subunits are potentiated by the neuropeptides substance P and bradykinin, which are known to modulate pain perception. The effect is mediated by the respective neuropeptide receptors, can be mimicked by phorbol ester and blocked by inhibitors of protein kinases. Together with data from site-directed mutagenesis our results suggest that inflammatory mediators sensitize nociceptors through phosphorylation of P2X(3) and P2X(2/3) ion channels or associated proteins.  相似文献   

12.
Acid-sensitive two-pore domain potassium channels (K2P3.1 and K2P9.1) play key roles in both physiological and pathophysiological mechanisms, the most fundamental of which is control of resting membrane potential of cells in which they are expressed. These background "leak" channels are constitutively active once expressed at the plasma membrane, and hence tight control of their targeting and surface expression is fundamental to the regulation of K(+) flux and cell excitability. The chaperone protein, 14-3-3, binds to a critical phosphorylated serine in the channel C termini of K2P3.1 and K2P9.1 (Ser(393) and Ser(373), respectively) and overcomes retention in the endoplasmic reticulum by βCOP. We sought to identify the kinase responsible for phosphorylation of the terminal serine in human and rat variants of K2P3.1 and K2P9.1. Adopting a bioinformatic approach, three candidate protein kinases were identified: cAMP-dependent protein kinase, ribosomal S6 kinase, and protein kinase C. In vitro phosphorylation assays were utilized to determine the ability of the candidate kinases to phosphorylate the channel C termini. Electrophysiological measurements of human K2P3.1 transiently expressed in HEK293 cells and cell surface assays of GFP-tagged K2P3.1 and K2P9.1 enabled the determination of the functional implications of phosphorylation by specific kinases. All of our findings support the conclusion that cAMP-dependent protein kinase is responsible for the phosphorylation of the terminal serine in both K2P3.1 and K2P9.1.  相似文献   

13.
Cardiotoxin III (CTX III), a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, has been reported to have anticancer activity. When K562 cells were treated with CTX III, cytosolic calcium concentration was rapidly and persistently increased. This CTX III-induced cell death was partially reversed by pretreatment with BAPTA/AM (20 microM), a chelator of intracellular Ca2+. Moreover, CTX III-induced apoptotic signals, such as caspase-12 and c-Jun N-terminal kinase (JNK) activation, were induced in a time-dependent manner and inhibited by BAPTA/AM. In contrast, the neutral protease micro-calpain, a key enzyme in endoplasmic reticulum (ER) stress-related apoptosis via caspase-12 activation, was unchanged during apoptosis. Taken together, our findings suggest CTX III-induced apoptosis is triggered by Ca2+ influx, then activated caspase-12 and JNK through micro-calpain-independent cascade, and consequently caused apoptosis.  相似文献   

14.
Cytochrome P450 epoxygenases (CYP450) have been recently shown to promote malignant progression. Here we investigated the mRNA and protein expression and potential clinical relevance of CYP2C9 in esophageal cancer. Highest expression was detected in esophageal adenocarcinoma (EAC; n=78) and adjacent esophageal mucosa (NEM; n=79). Levels of CYP2C9 in EAC and NEM were significantly higher compared to esophageal squamous cell carcinoma (ESCC; n=105). Early tumor stages and well-differentiated tumors showed a significantly higher CYP2C9 expression compared to progressed tumors. Moreover, CYP2C9 expression was correlated to high Ki-67 labeling indices in EAC and Ki-67 positive tumor cells in EAC and ESCC. Selective inhibition of CYP2C9 decreased tumor cell proliferation (KYSE30, PT1590 and OE19) in vitro, which was abolished by 11,12-epoxyeicosatrienoic acid (11,12-EET). Cell-cycle analysis using FACS revealed that inhibition of CYP2C9 leads to a G0/G1 phase cell-cycle arrest. CYP2C9 seems to be relevant for early esophageal cancer development by promoting tumor cell proliferation. Pharmacological inhibition of CYP2C9 might contribute to a more efficient therapy in CYP2C9 highly expressing esophageal cancers.  相似文献   

15.
Hyaluronan is synthesized within the cytoplasm and exported into the extracellular matrix through the cell membrane of fibroblasts by the MRP5 transporter. In order to meet the law of electroneutrality, a cation is required to neutralize the emerging negative hyaluronan charges. As we previously observed an inhibiting of hyaluronan export by inhibitors of K(+) channels, hyaluronan export was now analysed by simultaneously measuring membrane potential in the presence of drugs. This was done by both hyaluronan import into inside-out vesicles and by inhibition with antisense siRNA. Hyaluronan export from fibroblast was particularly inhibited by glibenclamide, ropivacain and BaCl(2) which all belong to ATP-sensitive inwardly-rectifying K(ir) channel inhibitors. Import of hyaluronan into vesicles was activated by 150 mM KCl and this activation was abolished by ATP. siRNA for the K(+) channels K(ir)3.4 and K(ir)6.2 inhibited hyaluronan export. Collectively, these results indicated that hyaluronan export depends on concurrent K(+) efflux.  相似文献   

16.
K(Ca) channels are involved in control of cell proliferation and differentiation. Here we have revealed their role in overcoming the RNase-induced cytotoxicity. Toxic effects of Streptomyces aureofaciens RNases Sa, Sa2, Sa3, and of RNase Sa charge reversal mutants on the human embryonic kidney cell lines differing only by the presence of K(Ca) channels were characterized. In contrast to other RNases, a basic variant of RNase Sa and RNase Sa3 exhibit significant cytotoxic activity of the same order of magnitude as onconase. Our data indicate the absence of a correlation between catalytic activity and stability of RNases and cytotoxicity. On the other hand, cationization enhances toxic effect of an RNase indicating the major role of a positive charge. Essentially lower sensitivity to cytotoxic microbial RNases of cells expressing K(Ca) channels was found. These results suggest that cells without the K(Ca) channel activity cannot counteract toxic effect of RNases.  相似文献   

17.
Ca(2+)-activated K(+) channels (K(Ca)) and NO play a central role in the endothelium-dependent control of vasomotor tone. We evaluated the interaction of K(Ca) with NO production in isolated arterial mesenteric beds of the rat. In phenylephrine-contracted mesenteries, acetylcholine (ACh)-induced vasodilation was reduced by NO synthase (NOS) inhibition with N(ω)-nitro-L-arginine (L-NA), but in the presence of tetraethylammonium, L-NA did not further affect the response. In KCl-contracted mesenteries, the relaxation elicited by 100 nM ACh or 1 μM ionomycin was abolished by L-NA, tetraethylammonium, or simultaneous blockade of small-conductance K(Ca) (SK(Ca)) channels with apamin and intermediate-conductance K(Ca) (IK(Ca)) channels with triarylmethane-34 (TRAM-34). Apamin-TRAM-34 treatment also abolished 100 nM ACh-activated NO production, which was associated with an increase in superoxide formation. Endothelial cell Ca(2+) buffering with BAPTA elicited a similar increment in superoxide. Apamin-TRAM-34 treatment increased endothelial NOS phosphorylation at threonine 495 (P-eNOS(Thr495)). Blockade of NAD(P)H oxidase with apocynin or superoxide dismutation with PEG-SOD prevented the increment in superoxide and changes in P-eNOS(Thr495) observed during apamin and TRAM-34 application. Our results indicate that blockade of SK(Ca) and IK(Ca) activates NAD(P)H oxidase-dependent superoxide formation, which leads to inhibition of NO release through P-eNOS(Thr495). These findings disclose a novel mechanism involved in the control of NO production.  相似文献   

18.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) regulates activities of numerous ion channels including inwardly rectifying potassium (Kir) channels, KCNQ, TRP, and voltage-gated calcium channels. Several studies suggest that voltage-gated potassium (KV) channels might be regulated by PI(4,5)P2. Wide expression of KV channels in different cells suggests that such regulation could have broad physiological consequences. To study regulation of KV channels by PI(4,5)P2, we have coexpressed several of them in tsA-201 cells with a G protein–coupled receptor (M1R), a voltage-sensitive lipid 5-phosphatase (Dr-VSP), or an engineered fusion protein carrying both lipid 4-phosphatase and 5-phosphatase activity (pseudojanin). These tools deplete PI(4,5)P2 with application of muscarinic agonists, depolarization, or rapamycin, respectively. PI(4,5)P2 at the plasma membrane was monitored by Förster resonance energy transfer (FRET) from PH probes of PLCδ1 simultaneously with whole-cell recordings. Activation of Dr-VSP or recruitment of pseudojanin inhibited KV7.1, KV7.2/7.3, and Kir2.1 channel current by 90–95%. Activation of M1R inhibited KV7.2/7.3 current similarly. With these tools, we tested for potential PI(4,5)P2 regulation of activity of KV1.1/KVβ1.1, KV1.3, KV1.4, and KV1.5/KVβ1.3, KV2.1, KV3.4, KV4.2, KV4.3 (with different KChIPs and DPP6-s), and hERG/KCNE2. Interestingly, we found a substantial removal of inactivation for KV1.1/KVβ1.1 and KV3.4, resulting in up-regulation of current density upon activation of M1R but no changes in activity upon activating only VSP or pseudojanin. The other channels tested except possibly hERG showed no alteration in activity in any of the assays we used. In conclusion, a depletion of PI(4,5)P2 at the plasma membrane by enzymes does not seem to influence activity of most tested KV channels, whereas it does strongly inhibit members of the KV7 and Kir families.  相似文献   

19.
The opening of ligand-gated ion channels in response to agonist binding is a fundamental process in biology. In ATP-gated P2X receptors, little is known about the molecular events that couple ATP binding to channel opening. In this paper, we identify structural changes of the ATP site accompanying the P2X2 receptor activation by engineering extracellular zinc bridges at putative mobile regions as revealed by normal mode analysis. We provide evidence that tightening of the ATP sites shaped like open 'jaws' induces opening of the P2X ion channel. We show that ATP binding favours jaw tightening, whereas binding of a competitive antagonist prevents gating induced by this movement. Our data reveal the inherent dynamic of the binding jaw, and provide new structural insights into the mechanism of P2X receptor activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号