首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
结核病是结核分枝杆菌复合物引起的传染性疾病,致死率、致残率高,在全球传染病中居第2位。近年来耐药结核病所占比例逐年升高,成为消灭结核病面临的巨大挑战之一。传统的耐药诊断方法基于培养,费时费力,所需技术要求高;而现有分子检测方法仅能检测少量抗结核药物的少数耐药基因。因此,更好地理解抗结核药物的耐药机制有助于全面耐药诊断。本文对临床中使用频率较高的11类一线和二线抗结核药物及其相应耐药相关基因、突变位点的研究进展进行总结,尤其是对环丝氨酸、利奈唑胺、氯法齐明等二线药物的近期研究做了系统描述,为全面耐药诊断、精准治疗指导、新药研发及耐药机制深入研究提供了前期工作基础。  相似文献   

3.
4.
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a bacterial pathogen that claims roughly 1.4 million lives every year. Current drug regimens are inefficient at clearing infection, requiring at least 6 months of chemotherapy, and resistance to existing agents is rising. There is an urgent need for new drugs that are more effective and faster acting. The folate pathway has been successfully targeted in other pathogens and diseases, but has not yielded a lead drug against tuberculosis. We developed a high-throughput screening assay against Mtb dihydrofolate reductase (DHFR), a critical enzyme in the folate pathway, and screened a library consisting of 32,000 synthetic and natural product-derived compounds. One potent inhibitor containing a quinazoline ring was identified. This compound was active against the wild-type laboratory strain H37Rv (MIC(99)?=?207 μM). In addition, an Mtb strain with artificially lowered DHFR levels showed increased sensitivity to this compound (MIC(99)?=?70.7 μM), supporting that the inhibition was target-specific. Our results demonstrate the potential to identify Mtb DHFR inhibitors with activity against whole cells, and indicate the power of using a recombinant strain of Mtb expressing lower levels of DHFR to facilitate the discovery of antimycobacterial agents. With these new tools, we highlight the folate pathway as a potential target for new drugs to combat the tuberculosis epidemic.  相似文献   

5.
The development of new therapies against infectious diseases is vital in developing countries. Among infectious diseases, tuberculosis is considered the leading cause of death. A target for development of new drugs is the tryptophan pathway. The last enzyme of this pathway, tryptophan synthase (TRPS), is responsible for conversion of the indole 3-glycerol phosphate into indol and the condensation of this molecule with serine-producing tryptophan. The present work describes the molecular models of TRPS from Mycobacterium tuberculosis (MtTRPS) complexed with six inhibitors, the indole 3-propanol phosphate and five arylthioalkyl-phosphonated analogs of substrate of the alpha-subunit. The molecular models of MtTRPS present good stereochemistry, and the binding of the inhibitors is favorable. Thus, the generated models can be used in the design of more specific drugs against tuberculosis and other infectious diseases.  相似文献   

6.
Although a variety of drugs are available for many infectious diseases that predominantly affect the developing world reasons remain for continuing to search for new chemotherapeutics. First, the development of microbial resistance has made some of the most effective and inexpensive drug regimes unreliable and dangerous to use on severely ill patients. Second, many existing antimicrobial drugs show toxicity or are too expensive for countries where the per capita income is in the order of hundreds of dollars per year. In recognition of this, new publicly and privately financed drug discovery efforts have been established to identify and develop new therapies for diseases such as tuberculosis, malaria and AIDS. This in turn, has intensified the need for tools to facilitate drug identification for those microbes whose molecular biology is poorly understood, or which are difficult to grow in the laboratory. While much has been written about how functional genomics can be used to find novel protein targets for chemotherapeutics this review will concentrate on how genome-wide, systems biology approaches may be used following whole organism, cell-based screening to understand the mechanism of drug action or to identify biological targets of small molecules. Here we focus on protozoan parasites, however, many of the approaches can be applied to pathogenic bacteria or parasitic helminths, insects or disease-causing fungi.  相似文献   

7.
Pulmonary tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB) and still remains one of the foremost fatal infectious diseases, infecting nearly a third of the worldwide population. The emergencies of multidrug-resistant and extensively drug-resistant tuberculosis (MDR and XDR-TB) prompt the efforts to deliver potent and novel anti-TB drugs. Research aimed at the development of new anti-TB drugs based on nitrofuran scaffold led to the identification of several candidates that were effective against actively growing as well as latent mycobacteria with unique modes of action. This review focuses on the recent advances in nitrofurans that could provide intriguing potential leads in the area of anti-TB drug discovery.  相似文献   

8.
Despite the urgent need for new antitubercular drugs, few are on the horizon. To combat the problem of emerging drug resistance, structurally unique chemical entities that inhibit new targets will be required. Here we describe our investigations using whole cell screening of a diverse collection of small molecules as a methodology for identifying novel inhibitors that target new pathways for Mycobacterium tuberculosis drug discovery. We find that conducting primary screens using model mycobacterial species may limit the potential for identifying new inhibitors with efficacy against M. tuberculosis. In addition, we confirm the importance of developing in vitro assay conditions that are reflective of in vivo biology for maximizing the proportion of hits from whole cell screening that are likely to have activity in vivo. Finally, we describe the identification and characterization of two novel inhibitors that target steps in M. tuberculosis cell wall biosynthesis. The first is a novel benzimidazole that targets mycobacterial membrane protein large 3 (MmpL3), a proposed transporter for cell wall mycolic acids. The second is a nitro-triazole that inhibits decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1), an epimerase required for cell wall biosynthesis. These proteins are both among the small number of new targets that have been identified by forward chemical genetics using resistance generation coupled with genome sequencing. This suggests that methodologies currently employed for screening and target identification may lead to a bias in target discovery and that alternative methods should be explored.  相似文献   

9.
Upregulation of autophagy may have therapeutic benefit in a range of diseases that includes neurodegenerative conditions caused by intracytosolic aggregate-prone proteins, such as Huntington's disease, and certain infectious diseases, such as tuberculosis. The best-characterized drug that enhances autophagy is rapamycin, an inhibitor of the TOR (target of rapamycin) proteins, which are widely conserved from yeast to man. Unfortunately, the side effects of rapamycin, especially immunosuppression, preclude its use in treating certain diseases including tuberculosis, which accounts for approximately 2 million deaths worldwide each year, spurring interest in finding novel drugs that selectively enhance autophagy. We have recently reported a novel two-step screening process for the discovery of such compounds. We first identified compounds that enhance the growth-inhibitory effects of rapamycin in the budding yeast Saccharomyces cerevisiae, which we termed small molecule enhancers of rapamycin (SMERs). Next we showed that three SMERs induced autophagy independently, or downstream of mTOR, in mammalian cells, and furthermore enhanced the clearance of a mutant huntingtin fragment in Huntington's disease cell models. These SMERs also protected against mutant huntingtin fragment toxicity in Drosophila. We have subsequently tested two of the SMERs in models of tuberculosis and both enhance the killing of mycobacteria by primary human macrophages.  相似文献   

10.
Glickman MS  Sawyers CL 《Cell》2012,148(6):1089-1098
During the past decade, cancer drug development has shifted from a focus on cytotoxic chemotherapies to drugs that target specific molecular alterations in tumors. Although these drugs dramatically shrink tumors, the responses are temporary. Research is now focused on overcoming drug resistance, a frequent cause of treatment failure. Here we reflect on analogous challenges faced by researchers in infectious diseases. We compare and contrast the resistance mechanisms arising in cancer and infectious diseases and discuss how approaches for overcoming viral and bacterial infections, such as HIV and tuberculosis, are instructive for developing a more rational approach for cancer therapy. In particular, maximizing the effect of the initial treatment response, which often requires synergistic combination therapy, is foremost among these approaches. A remaining challenge in both fields is identifying drugs that eliminate drug-tolerant "persister" cells (infectious disease) or tumor-initiating/stem cells (cancer) to prevent late relapse and shorten treatment duration.  相似文献   

11.
Over the years the introduction of very effective drugs has revolutionized the treatment of tuberculosis. In recent years, however, emerging multiple drug resistance has become a major threat and thus calls for an urgent search for new and effective treatments for this deadly disease. This review is complementary to earlier reviews and covers more recent reports of naturally occurring compounds, and in some cases synthetic analogs, largely from plants, fungi and marine organisms that demonstrate significant activity in the in vitro bioassays against Mycobacterium tuberculosis, and other mycobacterial species. Included also are traditional medicinal uses of specific plants when utilized to treat tuberculosis and other pulmonary diseases.  相似文献   

12.
The rapidly increasing amount of public data in chemistry and biology provides new opportunities for large-scale data mining for drug discovery. Systematic integration of these heterogeneous sets and provision of algorithms to data mine the integrated sets would permit investigation of complex mechanisms of action of drugs. In this work we integrated and annotated data from public datasets relating to drugs, chemical compounds, protein targets, diseases, side effects and pathways, building a semantic linked network consisting of over 290,000 nodes and 720,000 edges. We developed a statistical model to assess the association of drug target pairs based on their relation with other linked objects. Validation experiments demonstrate the model can correctly identify known direct drug target pairs with high precision. Indirect drug target pairs (for example drugs which change gene expression level) are also identified but not as strongly as direct pairs. We further calculated the association scores for 157 drugs from 10 disease areas against 1683 human targets, and measured their similarity using a [Formula: see text] score matrix. The similarity network indicates that drugs from the same disease area tend to cluster together in ways that are not captured by structural similarity, with several potential new drug pairings being identified. This work thus provides a novel, validated alternative to existing drug target prediction algorithms. The web service is freely available at: http://chem2bio2rdf.org/slap.  相似文献   

13.
结核病(Tuberculosis, TB)至今仍是世界三大传染疾病之一。2014年,TB导致的死亡人数已经超过HIV。二线抗TB药物是临床治疗耐多药TB(Multidrug-resistant TB, MDR-TB)的主要药物,然而某些MDR-TB患者由于未及时诊断、治疗方案不合理、所处区域医疗条件差等原因,逐渐发展成为广泛耐药TB(Extensively drug-resistant TB, XDR-TB),使治疗更加困难,其死亡率甚至与肺癌接近。目前结核分枝杆菌(Mycobacterium tuberculosis)的耐药性机制研究已经转向非一线药物,如二线、三线和一些新研发的抗TB药物,揭示这些非一线药物的耐药机制对于耐药TB的治疗和新型抗TB药物的研发具有重要意义。本文对目前临床上使用的主要非一线药物的耐药机制研究进行了综述,并对目前常用的TB耐药性诊断方法的优缺点进行了归纳比较。  相似文献   

14.
New and better drugs are needed for tuberculosis (TB), particularly for the multi-drug resistant (MDR) disease. However, the highly infectious nature of MDR Mycobacterium tuberculosis restricts its use for large scale screening of probable drug candidates. We have evaluated the potential of a screen based on a 'fast grower' mycobacterium to shortlist compounds which could be active against MDR M. tuberculosis. Sensitivity profiles of M. smegmatis, M. phlei and M. fortuitum as well as MDR clinical isolates of M. tuberculosis were determined against anti-TB drugs isoniazid and rifampicin. Among the three fast growers, M. smegmatis was found to display a profile similar to MDR M. tuberculosis. Subsequently we evaluated the performance of M. smegmatis as a 'surrogate' screen for 120 compounds which were synthesized for anti-TB activity. Fifty of these molecules were active against M. tuberculosis H(37)Rv at a minimum inhibitory concentration (MIC) cutoff of 相似文献   

15.
Inferring potential drug indications, for either novel or approved drugs, is a key step in drug development. Previous computational methods in this domain have focused on either drug repositioning or matching drug and disease gene expression profiles. Here, we present a novel method for the large‐scale prediction of drug indications (PREDICT) that can handle both approved drugs and novel molecules. Our method is based on the observation that similar drugs are indicated for similar diseases, and utilizes multiple drug–drug and disease–disease similarity measures for the prediction task. On cross‐validation, it obtains high specificity and sensitivity (AUC=0.9) in predicting drug indications, surpassing existing methods. We validate our predictions by their overlap with drug indications that are currently under clinical trials, and by their agreement with tissue‐specific expression information on the drug targets. We further show that disease‐specific genetic signatures can be used to accurately predict drug indications for new diseases (AUC=0.92). This lays the computational foundation for future personalized drug treatments, where gene expression signatures from individual patients would replace the disease‐specific signatures.  相似文献   

16.
Tuberculosis (TB) is the primary cause of mortality among infectious diseases. Mycobacterium tuberculosis thymidylate kinase (TMPK(Mtub)) catalyzes the ATP-dependent phosphorylation of deoxythymidine 5'-monophosphate (dTMP). Essential to DNA replication, this enzyme represents a promising target for developing new drugs against TB, because the configuration of its active site is unique within the TMPK family. Indeed, it has been proposed that, as opposed to other TMPKs, catalysis by TMPK(Mtub) necessitates the transient binding of a magnesium ion coordinating the phosphate acceptor. Moreover, 3'-azidodeoxythymidine monophosphate (AZTMP) is a competitive inhibitor of TMPK(Mtub), whereas it is a substrate for human and other TMPKs. Here, the crystal structures of TMPK(Mtub) in complex with deoxythymidine (dT) and AZTMP were determined to 2.1 and 2.0 A resolution, respectively, and suggest a mechanism for inhibition. The azido group of AZTMP perturbs the induced-fit mechanism normally adopted by the enzyme. Magnesium is prevented from binding, and the resulting electrostatic environment precludes phosphoryl transfer from occurring. Our data provide a model for drug development against tuberculosis.  相似文献   

17.
Goldberg DE  Siliciano RF  Jacobs WR 《Cell》2012,148(6):1271-1283
Although caused by vastly different pathogens, the world's three most serious infectious diseases, tuberculosis, malaria, and HIV-1 infection, share the common problem of drug resistance. The pace of drug development has been very slow for tuberculosis and malaria and rapid for HIV-1. But for each disease, resistance to most drugs has appeared quickly after the introduction of the drug. Learning how to manage and prevent resistance is a major medical challenge that requires an understanding of the evolutionary dynamics of each pathogen. This Review summarizes the similarities and differences in the evolution of drug resistance for these three pathogens.  相似文献   

18.
Méndez-Samperio P 《Peptides》2008,29(10):1836-1841
Worldwide, tuberculosis remains the most important infectious disease causing morbidity and death. Currently, at least one-third of the world's population is infected with Mycobacterium tuberculosis. In addition, the World Health Organization estimates that about 8-10 million new tuberculosis cases occur annually worldwide and this incidence is currently increasing. Moreover, multidrug-resistant tuberculosis has been increasing in incidence in many areas during the past decade. These situations underscore the importance of the development of new therapeutic agents against mycobacterial infectious diseases. In this article, it is review current progress in the understanding of antimicrobial peptides as potential candidates to develop an alternative/adjunct therapeutic strategy against tuberculosis. This immunoadjunctive therapy might be evaluated in the context of possible drug resistance. This review also summarizes the knowledge about the functions of antimicrobial peptides in the pulmonary innate host defense system and their role in mycobacterial infection, and at the same time outlines recent advances in our understanding of the combined effect of antimicrobial peptides and anti-tuberculosis drugs against intracellular mycobacteria. A concerted effort should now focus on the clinical application of antimicrobial peptides for their practical use.  相似文献   

19.
Comprehensive mapping and analysis of protein–protein interactions provide not only systematic approaches for dissecting the infection and survival mechanisms of pathogens but also clues for discovering new antibacterial drug targets. Protein interaction data on Mycobacterium tuberculosis have rapidly accumulated over the past several years. This review summarizes the current progress of protein interaction studies on M. tuberculosis, the causative agent of tuberculosis. These efforts improve our knowledge on the stress response, signaling regulation, protein secretion and drug resistance of the bacteria. M. tuberculosis–host protein interaction studies, although still limited, have recently opened a new door for investigating the pathogenesis of the bacteria. Finally, this review discusses the importance of protein interaction data on identifying and screening new anti-tuberculosis targets and drugs, respectively.  相似文献   

20.
Drug resistance is a serious public health problem that threatens to thwart our ability to treat many infectious diseases. Repeatedly, the introduction of new drugs has been followed by the evolution of resistance. In principle, there are two complementary ways to address this problem: (i) enhancing drug development and (ii) slowing the evolution of drug resistance through evolutionary management. Although these two strategies are not mutually exclusive, it is nevertheless worthwhile considering whether one might be inherently more effective than the other. We present a simple mathematical model that explores how interventions aimed at these two approaches affect the availability of effective drugs. Our results identify an interesting feature of evolution management that, all else equal, tends to make it more effective than enhancing drug development. Thus, although enhancing drug development will necessarily be a central part of addressing the problem of resistance, our results lend support to the idea that evolution management is probably a very significant component of the solution as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号