首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-small cell lung carcinoma (NSCLC) is the most common form of lung cancer and is associated with a high mortality rate worldwide. The majority of individuals bearing NSCLC are treated with surgery plus adjuvant cisplatin, an initially effective therapeutic regimen that, however, is unable to prevent relapse within 5 years after tumor resection in an elevated proportion of patients. The factors that predict the clinical course of NSCLC and its sensitivity to therapy remain largely obscure. One notable exception is provided by pyridoxal kinase (PDXK), the enzyme that generates the bioactive form of vitamin B6. PDXK has recently been shown to be required for optimal cisplatin responses in vitro and in vivo and to constitute a bona fide prognostic marker in the NSCLC setting. Together with PDXK, 84 additional factors were identified that influence the response of NSCLC cells to cisplatin, in vitro including the hepatic lipase LIPC. Here, we report that the intratumoral levels of LIPC, as assessed by immunohistochemistry in two independent cohorts of NSCLC patients, positively correlate with disease outcome. In one out of two cohorts studied, the overall survival of NSCLC patients bearing LIPChigh lesions was unaffected, if not slightly worsened, by cisplatin-based adjuvant therapy. Conversely, the overall survival of patients with LIPClow lesions was prolonged by post-operative cisplatin. Pending validation in appropriate clinical series, these results suggest that LIPClow NSCLC patients would be those who mainly benefit from adjuvant cisplatin therapy. Thus, the expression levels of LIPC appear to have an independent prognostic value (and perhaps a predictive potential) in the setting of NSCLC. If these findings were confirmed by additional studies, LIPC expression levels might allow not only for NSCLC patient stratification, but also for the implementation of personalized therapeutic approaches.  相似文献   

2.
Cisplatin resistance of non-small-cell lung cancer (NSCLC) needs to be well elucidated. RING finger protein (RNF38) has been proposed as a biomarker of NSCLC poor prognosis. However, its role in drug resistance in NSCLC is poorly understood. RNF38 expression was detected in normal lung epithelial cell and four NSCLC cell lines. RNF38 was stably overexpressed in A549 and H460 cells or silenced in H1975 and cisplatin-resistant A549 cells (A549-CDDP resistant) using lentiviral vectors. RNF38 expression levels were determined using quantitative real-time polymerase chain reaction and western blotting analysis. Cell viability in response to different concentrations of cisplatin was evaluated by Cell Counting Kit-8 assay. RNF38 expression levels were markedly elevated in NSCLC cells and cells harboring high RNF38 were less sensitive to cisplatin. Overexpression of RNF38 reduced, while RNF38 silencing increased the drug sensitivity of cisplatin in NSCLC cells. Cisplatin-resistant cells expressed high RNF38 level. RNF38 silencing promoted cell apoptosis and enhanced the drug sensitivity of cisplatin in cisplatin-resistant NSCLC cells. These findings indicate that RNF38 might induce cisplatin resistance of NSCLC cells via promoting cell apoptosis and RNF38 could be a novel target for rectify cisplatin resistance in NSCLC cases.  相似文献   

3.
Histone deacetylase inhibitors (HDACi) are promising therapeutic agents which are currently used in combination with chemotherapeutic agents in clinical trials for cancer treatment including non-small cell lung cancer (NSCLC). However, the mechanisms underlying their anti-tumor activities remain elusive. Previous studies showed that inhibition of HDAC6 induces DNA damage and sensitizes transformed cells to anti-tumor agents such as etoposide and doxorubicin. Here, we showed that depletion of HDAC6 in two NSCLC cell lines, H292 and A549, sensitized cells to cisplatin, one of the first-line chemotherapeutic agents used to treat NSCLC. We suggested that depletion of HDAC6 increased cisplatin-induced cytotoxicity was due to the enhancement of apoptosis via activating ATR/Chk1 pathway. Furthermore, we showed that HDAC6 protein levels were positively correlated with cisplatin IC(50) in 15 NSCLC cell lines. Lastly, depletion of HDAC6 in H292 xenografts rendered decreased tumor weight and volume and exhibited increased basal apoptosis compared with the controls in a xenograft mouse model. In summary, our findings suggest that HDAC6 is positively associated with cisplatin resistance in NSCLC and reveal HDAC6 as a potential novel therapeutic target for platinum refractory NSCLC.  相似文献   

4.
Although cisplatin is the most effective first-line drug in the management of advanced non-small cell lung cancer (NSCLC), drug resistance remains a major clinical challenge. There is increasing evidence that icariside II (IS) exhibits antitumour activity in a variety of cancers. In the current study, we investigated the anticancer effects of icariside II combined with cisplatin and elucidated the underlying mechanism in NSCLC. Here, we showed that cotreatment with IS and cisplatin inhibited cell proliferation and induced cellular apoptosis. Using mRNA sequencing (mRNA-seq), we identified differentially expressed genes (DEGs) in which there was an enrichment in PERK-mediated unfolded protein response (UPR) signalling. The western blot results revealed that IS activated endoplasmic reticulum (ER) stress, including three branches of UPR signalling, PERK, IRE1 and ATF6, and the downstream PERK-eIF2α-ATF4-CHOP pathway, thus potentiating the apoptosis induced by cisplatin. In addition, the combination of IS with cisplatin significantly reduced xenograft tumour growth in C57BL/6 and BALB/c nude mice in vivo. Notably, the combination therapy displayed no evident toxicity. Taken together, IS enhances cisplatin-induced apoptosis partially by promoting ER stress signalling in NSCLC, suggesting that combination treatment with IS and cisplatin is a novel potential therapeutic strategy for NSCLC.  相似文献   

5.
Mitochondria are the major organelles in sensing cellular stress and inducing the response for cell survival. Mitochondrial Lon has been identified as an important stress protein involved in regulating proliferation, metastasis, and apoptosis in cancer cells. However, the mechanism of retrograde signaling by Lon on mitochondrial DNA (mtDNA) damage remains to be elucidated. Here we report the role of Lon in the response to cisplatin-induced mtDNA damage and oxidative stress, which confers cancer cells on cisplatin resistance via modulating calcium levels in mitochondria and cytosol. First, we found that cisplatin treatment on oral cancer cells caused oxidative damage of mtDNA and induced Lon expression. Lon overexpression in cancer cells decreased while Lon knockdown sensitized the cytotoxicity towards cisplatin treatment. We further identified that cisplatin-induced Lon activates the PYK2-SRC-STAT3 pathway to stimulate Bcl-2 and IL-6 expression, leading to the cytotoxicity resistance to cisplatin. Intriguingly, we found that activation of this pathway is through an increase of intracellular calcium (Ca2+) via NCLX, a mitochondrial Na+/Ca2+ exchanger. We then verified that NCLX expression is dependent on Lon levels; Lon interacts with and activates NCLX activity. NCLX inhibition increased the level of mitochondrial calcium and sensitized the cytotoxicity to cisplatin in vitro and in vivo. In summary, mitochondrial Lon-induced cisplatin resistance is mediated by calcium release into cytosol through NCLX, which activates calcium-dependent PYK2-SRC-STAT3-IL-6 pathway. Thus, our work uncovers the novel retrograde signaling by mitochondrial Lon on resistance to cisplatin-induced mtDNA stress, indicating the potential use of Lon and NCLX inhibitors for better clinical outcomes in chemoresistant cancer patients.Subject terms: Cancer therapeutic resistance, Mitochondria, Calcium and vitamin D  相似文献   

6.
We have investigated defective steps in apoptosis that might account for the development of resistance. For this purpose, A549 and Calu1 NSCLC (non-small-cell lung cancer) cell lines were treated with cisplatin to obtain resistant sub-lines. Gene expression profiles and the phosphorylation status of the BAD (Bcl-2/Bcl-XL-antagonist, causing cell death) protein were determined for each cell line. Cell death and cytochrome c release were analysed after treating cell lines with their appropriate cisplatin doses. Gene expression of BAD, Bid, caspases 4 and 6 were clearly decreased in the resistant cell lines, and the differential phosphorylation status of BAD also seemed to play a role in the development of cisplatin resistance. Since this is a new cisplatin-resistant Calu1 cell line, it is noteworthy that DNA fragmentation, apoptotic cell ratio and cytochrome c levels were most decreased in the CR-Calu1 cell line.  相似文献   

7.

Background

Platinum-based chemotherapy is a standard strategy for non-small cell lung cancer (NSCLC), while chemoresistance remains a major therapeutic challenge in current clinical practice. Our present study was aimed to determine whether inhibition of the NF-κB/miR-21/PTEN pathway could increase the sensitivity of NSCLC to cisplatin.

Methods

The expression of miR-21 in NSCLC tissues was determined using in situ hybridization. Next, the effect of miR-21 on the sensitivity of A549 cells to cisplatin was determined in vitro. Whether miR-21 regulated PTEN expression was assessed by luciferase assay. Furthermore, whether NF-κB targeted its binding elements in the miR-21 gene promoter was determined by luciferase and ChIP assay. Finally, we measured the cell viability and apoptosis under cisplatin treatment when NF-κB was inhibited.

Results

An elevated level of miR-21 was observed in NSCLC lung tissues and was related to a short survival time. Exogenous miR-21 promoted cell survival when exposed to cisplatin, while miR-21 inhibition could reverse this process. The RNA and protein levels of PTEN were significantly decreased by exogenous miR-21, and the 3′-untranslated region of PTEN was shown to be a target of miR-21. The expression of miR-21 was regulated by NF-κB binding to its element in the promoter, a finding that was verified by luciferase and ChIP assay. Hence, inhibition of NF-κB by RNA silencing protects cells against cisplatin via decreasing miR-21 expression.

Conclusion

Modulation of the NF-κB/miR-21/PTEN pathway in NSCLC showed that inhibition of this pathway may increase cisplatin sensitivity.  相似文献   

8.
SOX1 was aberrant methylated in hepatocellular cancer and non-small cell lung cancer (NSCLC). Long-term cisplatin exposure promotes methylation of SOX1 in ovarian cancer cell, suggesting that SOX1 may be involved in cisplatin resistance. Our aim was to test the hypothesis that cisplatin resistance is associated with alteration of SOX1 expression in NSCLC. Expression of levels of SOX1 was examined using RT-PCR in cisplatin resistance cells and parental cells. The level of SOX1 mRNA in cisplatin resistance cells was markedly reduced when compared to parental cells. Promoter methylation of SOX1 was induced in cisplatin resistance cells. We also found that SOX1 silencing enhanced the cisplatin-mediated autophagy in NSCLC. This study shows that inactivation of SOX1 by promoter hypermethylation, at least in part, is responsible for cisplatin resistance in human NSCLC.  相似文献   

9.
Lung cancer is the leading cause of cancer‐related death globally, with non–small‐cell lung cancer (NSCLC) being the predominant subtype. Overall survival remains low for NSCLC patients, and novel targets are needed to improve outcome. Raf‐1 is a key component of the Ras/Raf/MEK signalling pathway, but its role and downstream targets in NSCLC are not completely understood. Our previous study indicated a possible correlation between Raf‐1 levels and ribosomal protein S6 kinase (p70S6K) function. In this study, we aimed to investigate whether p70S6K is a downstream target of Raf‐1 in NSCLC. Raf‐1 was silenced in NSCLC cell lines by using small hairpin RNA, and Raf‐1 and p70S6K protein levels were measured via Western blot. p70S6K was then overexpressed following Raf‐1 knock‐down; then, cell proliferation, apoptosis and the cell cycle in NSCLC cell lines were examined. Tumour xenografts with NSCLC cells were then transplanted for in vivo study. Tumours were measured and weighed, and Raf‐1 and p70S6K expression, cell proliferation and apoptosis were examined in tumour tissues by Western blot, Ki‐67 staining and TUNEL staining, respectively. When Raf‐1 was silenced, p70S6K protein levels were markedly decreased in the A549 and H1299 NSCLC cell lines. A significant decrease in NSCLC cell proliferation, a profound increase in apoptosis and cell cycle arrest were observed in vitro following Raf‐1 knock‐down. Overexpression of p70S6K after Raf‐1 depletion effectively reversed these effects. Xenograft studies confirmed these results in vivo. In conclusion, Raf‐1 targets p70S6K as its downstream effector to regulate NSCLC tumorigenicity, making Raf‐1/p70S6K signalling a promising target for NSCLC treatment.  相似文献   

10.
11.
Human epidermal growth factor receptor 2 (ErbB2) amplification and overexpression has been seen in many cancer types including non-small cell lung cancer (NSCLC). Thus, ErbB2 is an important target for cancer therapies. Increased ErbB2 expression has been associated with drug resistance in cancer cells. Herceptin is a humanized monoclonal antibody that targets the extracellular domain of ErbB2. In this study, we aimed to block ErbB2 signaling with Herceptin and assess cytotoxicity and effects on apoptosis, oxidative stress, nuclear factor kappa-B (NF-kB), and Survivin expression in Calu-3 cell line. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were used to assess cell viability as a marker of proliferation. Acridine orange/ethidium bromide (AO/EB) staining and caspase 3/7 activity were measured as the markers of apoptosis. The relative expressions of NF-kB-p50 and Survivin mRNAs were evaluated. Activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), and the levels of glutathione (GSH) and reactive oxygen species (ROS) were determined in a time- and dose-dependent manner. Our results show that Herceptin treatment inhibits cell proliferation and activates apoptosis but without effects on Survivin and NF-kB expression in Calu-3 cell line. Intracellular glutathione levels and SOD and CAT activities were decreased in a time- and dose-dependent manner associated with oxidative stress. Also, ROS were increased at 24 h. These results provide evidence that Herceptin can be used as a cytotoxic and apoptotic agent in NSCLC.  相似文献   

12.
Twist1 is highly expressed in primary and metastatic non-small cell lung cancer (NSCLC), and thus acts as a critical target for lung cancer chemotherapy. In the current study, we investigated the underlying mechanism initiated by silencing of Twist1 that sensitizes NSCLC cells to cisplatin. Silencing of Twist1 triggered ATP depletion, leading to AMP-activated protein kinase (AMPK)-activated mammalian target of rapamycin (mTOR) inhibition in NSCLC cells. AMPK-induced mTOR inhibition, in turn, resulted in downregulation of ribosome protein S6 kinase 1 (S6K1) activity. Downregulation of mTOR/S6K1 reduced Mcl-1 protein expression, consequently promoting sensitization to cisplatin. Overexpression of Mcl-1 reduced PARP cleavage induced by cisplatin and Twist1 siRNA, suggesting that this sensitization is controlled through Mcl-1 expression. Interestingly, cells treated with Twist1 siRNA displayed upregulation of p21Waf1/CIP1, and suppression of p21Waf1/CIP1 with specific siRNA further enhanced the cell death response to cisplatin/Twist1 siRNA. In conclusion, silencing of Twist1 sensitizes lung cancer cells to cisplatin via stimulating AMPK-induced mTOR inhibition, leading to a reduction in Mcl-1 protein. To our knowledge, this is the first report to provide a rationale for the implication of cross-linking between Twist1 and mTOR signaling in resistance of NSCLC to anticancer drugs.  相似文献   

13.
Expression of several molecular determinants of apoptosis was analyzed in 10 untreated small cell (SCLC) and 6 untreated non-small cell (NSCLC) lung carcinoma cell lines. Although SCLC lines were more prone to spontaneous apoptosis compared with NSCLC lines, the former showed higher Bcl-2 expression and a higher Bcl-2/Bax ratio. In order to understand this apparent contradiction, the expression of pro-caspases as well as calpain was analyzed in these cell lines at the protein and mRNA levels. No differences in protein level of pro-caspases-2, -3, -7, and -9 and of calpain were detected between the SCLC and the NSCLC lines, but a striking difference in pro-caspase-8 expression was noted. All 6 NSCLC, but only 2 of the 10 SCLC lines, expressed pro-caspase-8 protein. Further experiments using the RNase protection assay indicated that the lack of pro-caspase-8 expression at the mRNA level was characteristic for SCLC. Using the same experimental approach, we found that SCLC cell lines in addition to pro-caspase-8 were deficient in mRNA expression of pro-caspases-1, -4, and -10, suggesting a different caspase-activating cascade in SCLC compared with NSCLC. This first systematic characterization of pro-caspase expression in lung cancer surprisingly showed that SCLC, which are more prone to undergo spontaneous apoptosis, are deficient in several pro-caspases and have a high Bcl-2/Bax ratio. Thus, the propensity of SCLC cells to undergo apoptosis cannot be explained only by the expression of factors involved in regulation or execution of apoptosis.  相似文献   

14.
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. As a platinum-based chemotherapeutic drug, cisplatin has been used in the NSCLC treatment for over 30 years, and its effects are impaired by drug resistance. This study aimed to investigate the potential role of lncRNA-AC078883.3 in the development of chemoresistance against cisplatin. Real-time PCR, Western blot analysis, Immunohistochemistry (IHC) assay, bioinformatic analysis, and luciferase assay were collaboratively used to establish the lncRNA-AC078883.3/miR-19a/PTEN/AKT pathway. Also, the effect of cisplatin on cell proliferation was observed via an MTT assay. Furthermore, Cox regression and Kaplan–Meier analyses were used to study whether lncRNA-AC078883.3 is involved in the survival of NSCLC. Compared with the Cisplatin-Sensitive group, the Cisplatin-Resistance group exhibited lower levels of lncRNA-AC078883.3 and PTEN and higher levels of miR-19a and p-Akt. The growth rate of A549 and H460 cells and the IC 50 of DPP in the Cisplatin-Resistance group were higher than those in the Cisplatin-S group. miR-19a contains a putative binding site of lncRNA-AC078883.3, which enabled the luciferase activity of wild-type lncRNA-AC078883.3 to be reduced by miR-19a. In addition, by directly targeting PTEN 3′-untranslated region (UTR), miR-19a repressed the luciferase activity of wild-type PTEN 3′-UTR. The median OS of patients with reduced lncRNA-AC078883.3 expression was longer than that of patients with higher lncRNA-AC078883.3 expression. Finally, compared with low lncRNA-AC078883.3-expression patients, the high lncRNA-AC078883.3-expression patients were associated with lower miR-19a expression and higher PTEN expression. Therefore, we suggested for the first time that the low expression of lncRNA-AC078883.3 contributed to the development of chemoresistance against cisplatin.  相似文献   

15.
《Translational oncology》2020,13(2):372-382
INTRODUCTION: The efficacy of chemotherapeutic agents in killing cancer cells is mainly attributed to the induction of apoptosis. However, the tremendous efforts on enhancing apoptosis-related mechanisms have only moderately improved lung cancer chemotherapy, suggesting that other cell death mechanisms such as necroptosis could be involved. In this study, we investigated the role of the necroptosis pathway in the responsiveness of nonsmall cell lung cancer (NSCLC) to chemotherapy. METHODS: In vitro cell culture and in vivo xenograft tumor therapy models and clinical sample studies are combined in studying the role of necroptosis in chemotherapy and mechanism of necroptosis suppression involving RIP3 expression regulation. RESULTS: While chemotherapeutic drugs were able to induce necroptotic cell death, this pathway was suppressed in lung cancer cells at least partly through downregulation of RIP3 expression. Ectopic RIP3 expression significantly sensitized lung cancer cells to the cytotoxicity of anticancer drugs such as cisplatin, etoposide, vincristine, and adriamycin. In addition, RIP3 suppression was associated with RIP3 promoter methylation, and demethylation partly restored RIP3 expression and increased chemotherapeutic-induced necroptotic cell death. In a xenograft tumor therapy model, ectopic RIP3 expression significantly sensitized anticancer activity of cisplatin in vivo. Furthermore, lower RIP3 expression was associated with worse chemotherapy response in NSCLC patients. CONCLUSION: Our results indicate that the necroptosis pathway is suppressed in lung cancer through RIP3 promoter methylation, and reactivating this pathway should be exploited for improving lung cancer chemotherapy.  相似文献   

16.
The goal of the present study was to define gene expression signatures that predict a chemosensitivity of non-small cell lung cancer (NSCLC) to cisplatin and paclitaxel. To generate set of candidate genes likely to be predictive a current knowledge of the pathways involved in resistance and sensitivity to individual drugs was used. Forty four genes coding proteins belonging to following categories: ATP-dependent transport proteins, detoxification system proteins, reparation system proteins, tubulin and proteins responsible for its synthesis, cell cycle and apoptosis proteins were considered. Eight NSCLC cell lines (A549, Calul, H1299, H322, H358, H460, H292, and H23) were used in our study. For each NSCLC cell line a cisplatin and paclitaxel chemosensitivity as well as an expression level of 44 candidate genes were evaluated. To develop a chemosensitivity prediction model based on selected genes expression level a multiple regression analysis was performed. The model based on the expression level of 11 genes (TUBB3, TXR1, MRP5, MSH2, ERCC1, STMN, SMAC, FOLR1, PTPN14, HSPA2, GSTP1) allowed us to predict the paclitaxel cytotoxic concentration with high level of correlation (r = 0.91, p < 0.01). However, none model developed was able to reliably predict a sensitivity of the NSCLC cells to cisplatin.  相似文献   

17.
Vitamin D(3) inhibits cell growth and induces apoptosis in several human cancer lines in vitro and in vivo. However, little is known about the molecular events involved in vitamin D(3)-induced apoptosis. Here, we demonstrate that the growth-promoting/pro-survival signaling molecule mitogen-activated protein kinase kinase (MEK) is cleaved in a caspase-dependent manner in murine squamous cell carcinoma (SCC) cells induced to undergo apoptosis by treatment with vitamin D(3). Cleavage resulted in nearly complete loss of full-length MEK and ERK1/2 phosphorylation. ERK1/2 expression was affected only slightly. The phosphorylation and expression of Akt, a kinase regulating a second cell survival pathway, was also inhibited after treatment with vitamin D(3). However, the pro-apoptotic signaling molecule MEKK-1 was up-regulated in both apoptotic and non-apoptotic cells with greater induction and partial N-terminal proteolysis of MEKK-1 observed in apoptotic cells. In contrast to vitamin D(3), cisplatin and etoposide down-regulated Akt levels only modestly, did not promote significant loss of MEK expression, and did not up-regulate MEKK-1. We propose that vitamin D(3) induces apoptosis in SCC cells by a unique mechanism involving selective caspase-dependent MEK cleavage and up-regulation of MEKK-1. Additional evidence is provided that vitamin D(3)-induced apoptosis may be mediated via p38 MAPK.  相似文献   

18.
Cervical cancer is one of the most common cancers affecting a woman's reproductive organs. Despite its frequency and recurrence, the death rate has been declining over the past 40 years, due to early detection and treatment. In a previous report [Shehata Marlene, Shehata Marian, Shehata Fady, Pater Alan. Apoptosis effects of Xrel3 c-Rel/Nuclear factor-kappa B homolog in human cervical cancer cells. Cell Biology International, in press], we studied the role of the NF-kappaB gene family in HeLa human cervical cancer cells, using the Xrel3 c-Rel homologue of Xenopus laevis. These results showed that the expression of Xrel3/c-Rel slowed cell growth, consistent with an upregulated expression of the cell cycle inhibitor p21 and the activated poly(ADP-ribose) polymerase (PARP) apoptosis effector. However, in this report, we examined more apoptotic and anti-apoptotic factors acting upstream and downstream in apoptosis pathways after cisplatin treatment of HeLa cervical cancer cells. After 1 microM cisplatin treatment, Xrel3 had an anti-apoptotic effect, based on significantly lower levels of apoptotic proteins, including caspase-8, caspase-3 and p21. Anti-apoptotic BAG-1 isoforms were upregulated. After 5 microM cisplatin treatment, expression of HeLa Xrel3 had an apoptotic effect, based on significantly increased expression of the cell cycle inhibitor p21 and apoptotic proteins, including cleaved PARP, caspase-8, and caspase-3. However, anti-apoptotic Bcl-2 and Bcl-X(L) were elevated and the cell cycle regulator cyclin D1 was slightly upregulated with both 1 and 5 microM cisplatin treatment. The HPV E6 oncoprotein showed no significant changes. These results support previous conclusions on the potential anti-apoptotic effects of c-Rel/NF-kappaB in mild stress environments, as opposed to the apoptotic effects associated with high stress conditions [Lake BB, Ford R, Kao KR. Xrel3 is required for head development in Xenopus laevis. Development 2001; 128(2), 263-73.]. Thus, c-Rel/NF-kappaB may potentially be of clinical significance in chemotherapy.  相似文献   

19.
Pyridoxal kinase (PDXK) catalyzes the phosphorylation of pyridoxal, pyridoxamine, and pyridoxine in the presence of ATP and Zn2+. This constitutes an essential step in the synthesis of pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, a cofactor for over 140 enzymes. (R)-Roscovitine (CYC202, Seliciclib) is a relatively selective inhibitor of cyclin-dependent kinases (CDKs), currently evaluated for the treatment of cancers, neurodegenerative disorders, renal diseases, and several viral infections. Affinity chromatography investigations have shown that (R)-roscovitine also interacts with PDXK. To understand this interaction, we determined the crystal structure of PDXK in complex with (R)-roscovitine, N6-methyl-(R)-roscovitine, and O6-(R)-roscovitine, the two latter derivatives being designed to bind to PDXK but not to CDKs. Structural analysis revealed that these three roscovitines bind similarly in the pyridoxal-binding site of PDXK rather than in the anticipated ATP-binding site. The pyridoxal pocket has thus an unexpected ability to accommodate molecules different from and larger than pyridoxal. This work provides detailed structural information on the interactions between PDXK and roscovitine and analogs. It could also aid in the design of roscovitine derivatives displaying strict selectivity for either PDXK or CDKs.  相似文献   

20.
BackgroundNon-small cell lung cancer (NSCLC) is a leading cause of cancer death. Branched-chain amino acid (BCAA) homeostasis is important for normal physiological metabolism. Branched-chain keto acid dehydrogenase kinase (BCKDK) is a rate-limiting enzyme involved in BCAA degradation. BCAA metabolism has been highlighted in human cancers. The aberrant activation of mTORC1 has been implicated in tumor progression. Rab1A is a small GTPase, an activator of mTORC1, and an oncogene. This study aimed to reveal the specific role of BCKDK-BCAA-Rab1A-mTORC1 signaling in NSCLC.MethodsWe analyzed a cohort of 79 patients with NSCLC and 79 healthy controls. Plasma BCAA assays, immunohistochemistry, and network and pathway analyses were performed. The stable cell lines BCKDK-KD, BCKDK-OV A549, and H1299 were constructed. BCKDK, Rab1A, p-S6 and S6 were detected using western blotting to explore their molecular mechanisms of action in NSCLC. The effects of BCAA and BCKDK on the apoptosis and proliferation of H1299 cells were detected by cell function assays.ResultsWe demonstrated that NSCLC was primarily involved in BCAA degradation. Therefore, combining BCAA, CEA, and Cyfra21-1 is clinically useful for treating NSCLC. We observed a significant increase in BCAA levels, downregulation of BCKDHA expression, and upregulation of BCKDK expression in NSCLC cells. BCKDK promotes proliferation and inhibits apoptosis in NSCLC cells, and we observed that BCKDK affected Rab1A and p-S6 in A549 and H1299 cells via BCAA modulation. Leucine affected Rab1A and p-S6 in A549 and H1299 cells and affected the apoptosis rate of H1299 cells.In conclusion, BCKDK enhances Rab1A-mTORC1 signaling and promotes tumor proliferation by suppressing BCAA catabolism in NSCLC, suggesting a new biomarker for the early diagnosis and identification of metabolism-based targeted approaches for patients with NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号