首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.  相似文献   

2.
Translocation of tRNA and mRNA through the ribosome is one of the most dynamic events during protein synthesis. In the cell, translocation is catalysed by EF-G (elongation factor G) and driven by GTP hydrolysis. Major unresolved questions are: how the movement is induced and what the moving parts of the ribosome are. Recent progress in time-resolved cryoelectron microscopy revealed trajectories of tRNA movement through the ribosome. Driven by thermal fluctuations, the ribosome spontaneously samples a large number of conformational states. The spontaneous movement of tRNAs through the ribosome is loosely coupled to the motions within the ribosome. EF-G stabilizes conformational states prone to translocation and promotes a conformational rearrangement of the ribosome (unlocking) that accelerates the rate-limiting step of translocation: the movement of the tRNA anticodons on the small ribosomal subunit. EF-G acts as a Brownian ratchet providing directional bias for movement at the cost of GTP hydrolysis.  相似文献   

3.
Li W  Trabuco LG  Schulten K  Frank J 《Proteins》2011,79(5):1478-1486
Elongation factor G (EF‐G) plays a crucial role in two stages of mRNA‐(tRNA)2 translocation. First, EF‐G?GTP enters the pre‐translocational ribosome in its intersubunit‐rotated state, with tRNAs in their hybrid (P/E and A/P) positions. Second, a conformational change in EF‐G's Domain IV induced by GTP hydrolysis disengages the mRNA‐anticodon stem‐loops of the tRNAs from the decoding center to advance relative to the small subunit when the ribosome undergoes a backward inter‐subunit rotation. These events take place as EF‐G undergoes a series of large conformational changes as visualized by cryo‐EM and X‐ray studies. The number and variety of these structures leave open many questions on how these different configurations form during the dynamic translocation process. To understand the molecular mechanism of translocation, we examined the molecular motions of EF‐G in solution by means of molecular dynamics simulations. Our results show: (1) rotations of the super‐domain formed by Domains III–V with respect to the super‐domain formed by I–II, and rotations of Domain IV with respect to Domain III; (2) flexible conformations of both 503‐ and 575‐loops; (3) large conformational variability in the bound form caused by the interaction between Domain V and the GTPase‐associated center; (4) after GTP hydrolysis, the Switch I region seems to be instrumental for effecting the conformational change at the end of Domain IV implicated in the disengagement of the codon‐anticodon helix from the decoding center. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

4.
A key intermediate in translocation is an ‘unlocked state’ of the pre‐translocation ribosome in which the P‐site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two‐ and three‐colour smFRET imaging from multiple structural perspectives, EF‐G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF‐G‐bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.  相似文献   

5.
The translocation of tRNA coupled with mRNA in the ribosome is one of important steps during protein synthesis. Despite extensive experimental studies, the detailed mechanism of the translocation remains undetermined. Here, based on previous biochemical, cryo-electron microscopic and X-ray crystallographic studies, a thermal ratchet model is presented for this translocation. In the model, during one elongation cycle of the protein synthesis, two large conformational transitions of the ribosome are involved, with one being the relative rotation between the two ribosomal subunits following the peptide transfer, which is facilitated by the EF-G.GTP binding, and the other one being the reverse relative rotation between the two ribosomal subunits upon EF-G.GTP hydrolysis. The former conformational change plays an important role in ensuring the completion of the release of the deacylated tRNA from the ribosome before tRNA–mRNA translocation. The latter reverse conformational change upon GTP hydrolysis is followed by rapid tRNA–mRNA translocation and Pi release, both of which take place independently of each other. This is consistent with the previous biochemical experimental data. Also, the model is consistent with other available experimental results such as the suppression of EF-G-dependent translocation in cross-linked ribosomes and frameshifting under some conditions.  相似文献   

6.
7.
A conserved translation factor, known as EF-G in bacteria, promotes the translocation of tRNA and mRNA in the ribosome during protein synthesis. Here, EF-G.ribosome complexes in two intermediate states, before and after mRNA translocation, have been probed with hydroxyl radicals generated from free Fe(II)-EDTA. Before mRNA translocation and GTP hydrolysis, EF-G protected a limited set of nucleotides in both subunits of the ribosome from cleavage by hydroxyl radicals. In this state, an extensive set of nucleotides, in the platform and head domains of the 30S subunit and in the L7/L12 stalk region of the 50S subunit, became more exposed to hydroxyl radical attack, suggestive of conformational changes in these domains. Following mRNA translocation, EF-G protected a larger set of nucleotides (23S rRNA helices H43, H44, H89, and H95; 16S rRNA helices h5 and h15). No nucleotide with enhanced reactivity to hydroxyl radicals was detected in this latter state. Both before and after mRNA translocation, EF-G protected identical nucleotides in h5 and h15 of the 30S subunit. These results suggest that h5 and h15 may remain associated with EF-G during the dynamic course of the translocation mechanism. Nucleotides in H43 and H44 of the 50S subunit were protected only after translocation and GTP hydrolysis, suggesting that these helices interact dynamically with EF-G. The effects in H95 suggest that EF-G interacts weakly with H95 before mRNA translocation and strongly and more extensively with this helix following mRNA translocation.  相似文献   

8.
Elongation factor G (EF‐G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF‐G and GTP hydrolysis control these movements is still unclear. We used fluorescence labels that specifically monitor movements on either 30S or 50S subunits in combination with EF‐G mutants and translocation‐specific antibiotics to investigate timing and energetics of translocation. We show that EF‐G–GTP facilitates synchronous movements of peptidyl‐tRNA on the two subunits into an early post‐translocation state, which resembles a chimeric state identified by structural studies. EF‐G binding without GTP hydrolysis promotes only partial tRNA movement on the 50S subunit. However, rapid 30S translocation and the concomitant completion of 50S translocation require GTP hydrolysis and a functional domain 4 of EF‐G. Our results reveal two distinct modes for utilizing the energy of EF‐G binding and GTP hydrolysis and suggest that coupling of GTP hydrolysis to translocation is mediated through rearrangements of the 30S subunit.  相似文献   

9.
Coordinated translocation of the tRNA-mRNA complex by the ribosome occurs in a precise, stepwise movement corresponding to a distance of three nucleotides along the mRNA. Frameshift suppressor tRNAs generally contain an extra nucleotide in the anticodon loop and they subvert the normal mechanisms used by the ribosome for frame maintenance. The mechanism by which suppressor tRNAs traverse the ribosome during translocation is poorly understood. Here, we demonstrate translocation of a tRNA by four nucleotides from the A site to the P site, and from the P site to the E site. We show that translocation of a punctuated mRNA is possible with an extra, unpaired nucleotide between codons. Interestingly, the NMR structure of the four nucleotide anticodon stem-loop reveals a conformation different from the canonical tRNA structure. Flexibility within the loop may allow conformational adjustment upon A site binding and for interacting with the four nucleotide codon in order to shift the mRNA reading frame.  相似文献   

10.
The ribosome is a complex macromolecular assembly capable of translating mRNA sequence into amino acid sequence. The adaptor molecule of translation is tRNA, but the delivery of aminoacyl-tRNAs--the primary substrate of the ribosome--relies on the formation of a ternary complex with elongation factor Tu (EF-Tu) and GTP. Likewise, elongation factor G (EF-G) is required to reset the elongation cycle through the translocation of tRNAs. Recent structures and biochemical data on ribosomes in complex with the ternary complex or EF-G have shed light on the mode of action of the elongation factors, and how this interplays with the state of tRNAs and the ribosome. A model emerges of the specific routes of conformational changes mediated by tRNA and the ribosome that trigger the GTPase activity of the elongation factors on the ribosome.  相似文献   

11.
Aminoglycosides are one of the most widely used and clinically important classes of antibiotics that target the ribosome. Hygromycin B is an atypical aminoglycoside antibiotic with unique structural and functional properties. Here we describe the structure of the intact Escherichia coli 70S ribosome in complex with hygromycin B. The antibiotic binds to the mRNA decoding center in the small (30S) ribosomal subunit of the 70S ribosome and induces a localized conformational change, in contrast to its effects observed in the structure of the isolated 30S ribosomal subunit in complex with the drug. The conformational change in the ribosome caused by hygromycin B binding differs from that induced by other aminoglycosides. Also, in contrast to other aminoglycosides, hygromycin B potently inhibits spontaneous reverse translocation of tRNAs and mRNA on the ribosome in vitro. These structural and biochemical results help to explain the unique mode of translation inhibition by hygromycin B.  相似文献   

12.
Rodnina  M. V.  Semenkov  Yu. P.  Savelsbergh  A.  Katunin  V. I.  Peske  F.  Wilden  B.  Wintermeyer  W. 《Molecular Biology》2001,35(4):559-568
During the translocation step of the elongation cycle of peptide synthesis two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. Translocation is catalyzed by the elongation factor G (EF-G) and requires GTP hydrolysis. The fundamental biochemical features of the process were worked out in the 1970–80s, to a large part by A.S. Spirin and his colleagues. Recent results from pre-steady-state kinetic analysis and cryoelectron microscopy suggest that translocation is a multistep dynamic process that entails large-scale structural rearrangements of both ribosome and EF-G. Kinetic and thermodynamic data, together with the structural information on the conformational changes in the ribosome and EF-G, provide a detailed mechanistic model of translocation and suggest a mechanism of translocation catalysis by EF-G.  相似文献   

13.
Escherichia coli ribosomes have a site (E) to which deacylated tRNA binds transiently before leaving the ribosome during translocation. The affinity of the site is Mg2+ dependent and low at physiological Mg2+ concentrations. Correct codon-anticodon interaction is unnecessary in this site. With these features, the E site cannot reduce frameshift errors through additional mRNA anchorage. Occupancy of the A site does not influence the tRNA binding in the E site, although a conformational change of elongation factor G, brought about by GTP hydrolysis, is necessary for efficient tRNA release. The tRNA can dissociate unhindered from the E site when the elongation factor is bound to the ribosome by fusidic acid. During elongation, the thermodynamically stable state is not attained, since E site occupation inhibits translocation. However, the E site can aid elongation by providing an intermediate state for tRNA dissociation, dispersing the process into more than one step.  相似文献   

14.
核糖体是蛋白质的"合成工厂",也是临床上多种抗菌药物的作用靶点,因此,深入理解细菌核糖体的蛋白质翻译机制意义重大.蛋白质翻译是通过多步骤相互协调、多组分精细配合来实现高保真和精确调控.核糖体在mRNA上的移位作为翻译过程中最重要的事件之一,需要核糖体大规模的构象重排以及tRNA2-mRNA沿着核糖体的精确移动.在细菌中,移位是由延伸因子EF-G催化GTP水解来驱动的.近年来,单分子荧光共振能量技术(smFRET)的发展使得人们可以探究单个tRNA分子移位的动力学过程并实时观测核糖体的构象变化.本文首先介绍了smFRET技术的原理及特点,对其在核糖体结构动态及tRNA移位研究中的应用进行了较为系统的总结,并对其应用前景进行了展望.  相似文献   

15.
We have used single‐particle reconstruction in cryo‐electron microscopy to determine a structure of the Thermus thermophilus ribosome in which the ternary complex of elongation factor Tu (EF‐Tu), tRNA and guanine nucleotide has been trapped on the ribosome using the antibiotic kirromycin. This represents the state in the decoding process just after codon recognition by tRNA and the resulting GTP hydrolysis by EF‐Tu, but before the release of EF‐Tu from the ribosome. Progress in sample purification and image processing made it possible to reach a resolution of 6.4 Å. Secondary structure elements in tRNA, EF‐Tu and the ribosome, and even GDP and kirromycin, could all be visualized directly. The structure reveals a complex conformational rearrangement of the tRNA in the A/T state and the interactions with the functionally important switch regions of EF‐Tu crucial to GTP hydrolysis. Thus, the structure provides insights into the molecular mechanism of signalling codon recognition from the decoding centre of the 30S subunit to the GTPase centre of EF‐Tu.  相似文献   

16.
During the elongation cycle, tRNA and mRNA undergo coupled translocation through the ribosome catalyzed by elongation factor G (EF-G). Cryo-EM reconstructions of certain EF-G-containing complexes led to the proposal that the mechanism of translocation involves rotational movement between the two ribosomal subunits. Here, using single-molecule FRET, we observe that pretranslocation ribosomes undergo spontaneous intersubunit rotational movement in the absence of EF-G, fluctuating between two conformations corresponding to the classical and hybrid states of the translocational cycle. In contrast, posttranslocation ribosomes are fixed predominantly in the classical, nonrotated state. Movement of the acceptor stem of deacylated tRNA into the 50S E site and EF-G binding to the ribosome both contribute to stabilization of the rotated, hybrid state. Furthermore, the acylation state of P site tRNA has a dramatic effect on the frequency of intersubunit rotation. Our results provide direct evidence that the intersubunit rotation that underlies ribosomal translocation is thermally driven.  相似文献   

17.
A ribosome is an enzyme that catalyzes translation of the genetic information encoded in messenger RNA (mRNA) into proteins. Besides translation through the single-stranded mRNA, the ribosome is also able to translate through the duplex region of mRNA via unwinding the duplex. Here, based on our proposed ribosome translation model, we study analytically the dynamics of Escherichia coli ribosome translation through the duplex region of mRNA, and compare with the available single molecule experimental data. It is shown that the ribosome uses only one active mechanism (mechanical unwinding), rather than two active mechanisms (open-state stabilization and mechanical unwinding), as proposed before, to unwind the duplex. The reduced rate of translation through the duplex region is due to the occurrence of futile transitions, which are induced by the energy barrier from the duplex unwinding to the forward translocation along the single-stranded mRNA. Moreover, we also present predicted results of the average translation rate versus the external force acting on the ribosome translating through the duplex region and through the single-stranded region of mRNA, which can be easily tested by future experiments.  相似文献   

18.
During the translocation step of the elongation cycle of peptide synthesis two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. Translocation is catalyzed by the elongation factor G (EF-G) and requires GTP hydrolysis. The fundamental biochemical features of the process were worked out in the 1970-80s, to a large part by A.S. Spirin and his colleagues. Recent results from pre-steady-state kinetic analysis and cryoelectron microscopy suggest that translocation is a multistep dynamic process that entails large-scale structural rearrangements of both ribosome and EF-G. Kinetic and thermodynamic data, together with the structural information on the conformational changes of the ribosome and of EF-G, provide a detailed mechanistic model of translocation and suggest a mechanism of translocation catalysis by EF-G.  相似文献   

19.
20.
During the translocation step of the elongation cycle, two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. The movement is catalyzed by the binding of elongation factor G (EF-G) and driven by GTP hydrolysis. Here we study structural changes of the ribosome related to EF-G binding and translocation by monitoring the accessibility of ribosomal RNA (rRNA) for chemical modification by dimethyl sulfate or cleavage by hydroxyl radicals generated by Fe(II)-EDTA. In the state of the ribosome that is formed upon binding of EF-G but before the movement of the tRNAs takes place, residues 1054,1196, and 1201 in helix 34 in 16S rRNA are strongly protected. The protections depend on EF-G binding, but do not require GTP hydrolysis, and are lost upon translocation. Mutants of EF-G, which are active in ribosome binding and GTP hydrolysis but impaired in translocation, do not bring about the protections. According to cryo-electron microscopy (Stark et al., Cell, 2000, 100:301-309), there is no contact of EF-G with the protected residues of helix 34 in the pretranslocation state, suggesting that the observed protections are due to an induced conformational change. Thus, the present results indicate that EF-G binding to the pretranslocation ribosome induces a structural change of the head of the 30S subunit that is essential for subsequent tRNA-mRNA movement in translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号