首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial calcium uniporter is a Ca2+‐activated Ca2+ channel that is essential for dynamic modulation of mitochondrial function in response to cellular Ca2+ signals. It is regulated by two paralogous EF‐hand proteins—MICU1 and MICU2, but the mechanism is unknown. Here, we demonstrate that both MICU1 and MICU2 are stabilized by Ca2+. We reconstitute the MICU1–MICU2 heterodimer and demonstrate that it binds Ca2+ cooperatively with high affinity. We discover that both MICU1 and MICU2 exhibit affinity for the mitochondria‐specific lipid cardiolipin. We determine the minimum Ca2+ concentration required for disinhibition of the uniporter in permeabilized cells and report a close match with the Ca2+‐binding affinity of MICU1–MICU2. We conclude that cooperative, high‐affinity interaction of the MICU1–MICU2 complex with Ca2+ serves as an on–off switch, leading to a tightly controlled channel, capable of responding directly to cytosolic Ca2+ signals.  相似文献   

2.
Ferroptosis has recently attracted much interest because of its relevance to human diseases such as cancer and ischemia‐reperfusion injury. We have reported that prolonged severe cold stress induces lipid peroxidation‐dependent ferroptosis, but the upstream mechanism remains unknown. Here, using genome‐wide CRISPR screening, we found that a mitochondrial Ca2+ uptake regulator, mitochondrial calcium uptake 1 (MICU1), is required for generating lipid peroxide and subsequent ferroptosis under cold stress. Furthermore, the gatekeeping activity of MICU1 through mitochondrial calcium uniporter (MCU) is suggested to be indispensable for cold stress‐induced ferroptosis. MICU1 is required for mitochondrial Ca2+ increase, hyperpolarization of the mitochondrial membrane potential (MMP), and subsequent lipid peroxidation under cold stress. Collectively, these findings suggest that the MICU1‐dependent mitochondrial Ca2+ homeostasis‐MMP hyperpolarization axis is involved in cold stress‐induced lipid peroxidation and ferroptosis.  相似文献   

3.
In pancreatic β-cells, uptake of Ca2+ into mitochondria facilitates metabolism-secretion coupling by activation of various matrix enzymes, thus facilitating ATP generation by oxidative phosphorylation and, in turn, augmenting insulin release. We employed an siRNA-based approach to evaluate the individual contribution of four proteins that were recently described to be engaged in mitochondrial Ca2+ sequestration in clonal INS-1 832/13 pancreatic β-cells: the mitochondrial Ca2+ uptake 1 (MICU1), mitochondrial Ca2+ uniporter (MCU), uncoupling protein 2 (UCP2), and leucine zipper EF-hand-containing transmembrane protein 1 (LETM1). Using a FRET-based genetically encoded Ca2+ sensor targeted to mitochondria, we show that a transient knockdown of MICU1 or MCU diminished mitochondrial Ca2+ uptake upon both intracellular Ca2+ release and Ca2+ entry via L-type channels. In contrast, knockdown of UCP2 and LETM1 exclusively reduced mitochondrial Ca2+ uptake in response to either intracellular Ca2+ release or Ca2+ entry, respectively. Therefore, we further investigated the role of MICU1 and MCU in metabolism-secretion coupling. Diminution of MICU1 or MCU reduced mitochondrial Ca2+ uptake in response to d-glucose, whereas d-glucose-triggered cytosolic Ca2+ oscillations remained unaffected. Moreover, d-glucose-evoked increases in cytosolic ATP and d-glucose-stimulated insulin secretion were diminished in MICU1- or MCU-silenced cells. Our data highlight the crucial role of MICU1 and MCU in mitochondrial Ca2+ uptake in pancreatic β-cells and their involvement in the positive feedback required for sustained insulin secretion.  相似文献   

4.
The mitochondrial uniporter is a selective Ca2+ channel regulated by MICU1, an EF hand‐containing protein in the organelle's intermembrane space. MICU1 physically associates with and is co‐expressed with a paralog, MICU2. To clarify the function of MICU1 and its relationship to MICU2, we used gene knockout (KO) technology. We report that HEK‐293T cells lacking MICU1 or MICU2 lose a normal threshold for Ca2+ intake, extending the known gating function of MICU1 to MICU2. Expression of MICU1 or MICU2 mutants lacking functional Ca2+‐binding sites leads to a striking loss of Ca2+ uptake, suggesting that MICU1/2 disinhibit the channel in response to a threshold rise in [Ca2+]. MICU2's activity and physical association with the pore require the presence of MICU1, though the converse is not true. We conclude that MICU1 and MICU2 are nonredundant and together set the [Ca2+] threshold for uniporter activity.  相似文献   

5.
The mitochondrial calcium uniporter (MCU) is a protein located in the inner mitochondrial membrane that is responsible for mitochondrial Ca2+ uptake. Under certain pathological conditions, dysregulation of Ca2+ uptake through the MCU results in cellular dysfunction and apoptotic cell death. Given the role of the MCU in human disease, researchers have developed compounds capable of inhibiting mitochondrial calcium uptake as tools for understanding the role of this protein in cell death. In this article, we describe recent findings on the role of the MCU in mediating pathological conditions and the search for small-molecule inhibitors of this protein for potential therapeutic applications.  相似文献   

6.
Calcium uptake through the mitochondrial Ca2+ uniporter (MCU) is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and prostate cancers and suggest that not all carcinomas will be sensitive to therapies targeting mitochondrial Ca2+ uptake mechanisms.  相似文献   

7.
The molecular components of the mitochondrial Ca2+ uptake machinery have been only recently identified. In the last months, in addition to the pore forming subunit and of one regulatory protein (named MCU and MICU1, respectively) other four components of this complex have been described. In addition, a MCU KO mouse model has been generated and a genetic human disease due to missense mutation of MICU1 has been discovered. In this contribution, we will first summarize the recent findings, discussing the roles of the different subunits of the mitochondrial Ca2+ uptake complex, pointing to the current contradictions in the published data, as well as possible explanations. Finally we will speculate on the recent, totally unexpected, results obtained in the MCU knock-out (KO) mice.  相似文献   

8.
线粒体钙离子摄入对能量生成、细胞分裂和死亡均具有十分重要的作用,但对该过程的机制却知之甚少。最近研究鉴定出线粒体钙离子单向转运蛋白(MCU,mitochondrial calcium uniporter)和线粒体钙离子摄入蛋白1(MICU1,mitochondrial calcium uptake 1),这两种蛋白都定位于线粒体内膜,均参与钙离子摄入。MCU拥有两个跨膜结构域,显示出钙离子通道活性并对钌红敏感,而MICU1具有两个典型的EF手形结构域,该结构可感知钙离子的变化,可能作为MCU调节蛋白发挥作用。这些研究进展对线粒体内稳态的理解和线粒体相关疾病的治疗具有重要意义。  相似文献   

9.
Age-related loss of skeletal muscle mass and function, termed sarcopenia, could impair the quality of life in the elderly. The mechanisms involved in skeletal muscle aging are intricate and largely unknown. However, more and more evidence demonstrated that mitochondrial dysfunction and apoptosis also play an important role in skeletal muscle aging. Recent studies have shown that mitochondrial calcium uniporter (MCU)-mediated mitochondrial calcium affects skeletal muscle mass and function by affecting mitochondrial function. During aging, we observed downregulated expression of mitochondrial calcium uptake family member3 (MICU3) in skeletal muscle, a regulator of MCU, which resulted in a significant reduction in mitochondrial calcium uptake. However, the role of MICU3 in skeletal muscle aging remains poorly understood. Therefore, we investigated the effect of MICU3 on the skeletal muscle of aged mice and senescent C2C12 cells induced by d-gal. Downregulation of MICU3 was associated with decreased myogenesis but increased oxidative stress and apoptosis. Reconstitution of MICU3 enhanced antioxidants, prevented the accumulation of mitochondrial ROS, decreased apoptosis, and increased myogenesis. These findings indicate that MICU3 might promote mitochondrial Ca2+ homeostasis and function, attenuate oxidative stress and apoptosis, and restore skeletal muscle mass and function. Therefore, MICU3 may be a potential therapeutic target in skeletal muscle aging.Subject terms: Ageing, Calcium and phosphate metabolic disorders  相似文献   

10.
11.
Mitochondrial calcium uniporter (MCU) channel is responsible for Ruthenium Red‐sensitive mitochondrial calcium uptake. Here, we demonstrate MCU oligomerization by immunoprecipitation and Förster resonance energy transfer (FRET) and characterize a novel protein (MCUb) with two predicted transmembrane domains, 50% sequence similarity and a different expression profile from MCU. Based on computational modelling, MCUb includes critical amino‐acid substitutions in the pore region and indeed MCUb does not form a calcium‐permeable channel in planar lipid bilayers. In HeLa cells, MCUb is inserted into the oligomer and exerts a dominant‐negative effect, reducing the [Ca2+]mt increases evoked by agonist stimulation. Accordingly, in vitro co‐expression of MCUb with MCU drastically reduces the probability of observing channel activity in planar lipid bilayer experiments. These data unveil the structural complexity of MCU and demonstrate a novel regulatory mechanism, based on the inclusion of dominant‐negative subunits in a multimeric channel, that underlies the fine control of the physiologically and pathologically relevant process of mitochondrial calcium homeostasis.  相似文献   

12.
Recent studies have shown that the mitochondrial DNA mutations are involved in the pathogenesis of hypertension. Our previous study identified mitochondrial tRNAIle A4263G mutation in a large Chinese Han family with maternally-inherited hypertension. This mutation may contribute to mitochondrial Ca2+ cycling dysfuntion, but the mechanism is unclear. Lymphoblastoid cell lines were derived from hypertensive and normotensive individuals, either with or without tRNAIle A4263G mutation. The mitochondrial calcium ([Ca2+]m) in cells from hypertensive subjects with the tRNAIle A4263G mutation, was lower than in cells from normotension or hypertension without mutation, or normotension with mutation (P < 0.05). Meanwhile, cytosolic calcium ([Ca2+]c) in hypertensive with mutation cells was higher than another three groups. After exposure to caffeine, which could increase the [Ca2+]c by activating ryanodine receptor on endoplasmic reticulum, [Ca2+]c/[Ca2+]m increased higher than in hypertensive with mutation cells from another three groups. Moreover, MCU expression was decreased in hypertensive with mutation cells compared with in another three groups (P < 0.05). [Ca2+]c increased and [Ca2+]m decreased after treatment with Ru360 (an inhibitor of MCU) or an siRNA against MCU. In this study we found decreased MCU expression in hypertensive with mutation cells contributed to dysregulated Ca2+ uptake into the mitochondria, and cytoplasmic Ca2+ overload. This abnormality might be involved in the underlying mechanisms of maternally inherited hypertension in subjects carrying the mitochondrial tRNAIle A4263G mutation.  相似文献   

13.
The recently identified Mitochondrial Calcium Uniporter (MCU) is the protein of the inner mitochondrial membrane responsible for Ca2+ uptake into the matrix, which plays a role in the control of cellular signaling, aerobic metabolism and apoptosis. At least two properties of mitochondrial calcium signaling are well defined: (i) mitochondrial Ca2+ uptake varies greatly among different cells and tissues, and (ii) channel opening is strongly affected by extramitochondrial Ca2+ concentration, with low activity at resting and high capacity after cellular stimulation. It is now becoming clear that these features of the mitochondrial Ca2+ uptake machinery are not embedded in the MCU protein itself, but are rather due to the contribution of several MCU interactors. The list of the components of the MCU complex is indeed rapidly growing, thus revealing an unexpected complexity that highlights the pleiotropic role of mitochondrial calcium signaling.  相似文献   

14.
Intracellular Ca2+ is vital for cell physiology. Disruption of Ca2+ homeostasis contributes to human diseases such as heart failure, neuron-degeneration, and diabetes. To ensure an effective intracellular Ca2+ dynamics, various Ca2+ transport proteins localized in different cellular regions have to work in coordination. The central role of mitochondrial Ca2+ transport mechanisms in responding to physiological Ca2+ pulses in cytosol is to take up Ca2+ for regulating energy production and shaping the amplitude and duration of Ca2+ transients in various micro-domains. Since the discovery that isolated mitochondria can take up large quantities of Ca2+ approximately 5 decades ago, extensive studies have been focused on the functional characterization and implication of ion channels that dictate Ca2+ transport across the inner mitochondrial membrane. The mitochondrial Ca2+ uptake sensitive to non-specific inhibitors ruthenium red and Ru360 has long been considered as the activity of mitochondrial Ca2+ uniporter (MCU). The general consensus is that MCU is dominantly or exclusively responsible for the mitochondrial Ca2+ influx. Since multiple Ca2+ influx mechanisms (e.g. L-, T-, and N-type Ca2+ channel) have their unique functions in the plasma membrane, it is plausible that mitochondrial inner membrane has more than just MCU to decode complex intracellular Ca2+ signaling in various cell types. During the last decade, four molecular identities related to mitochondrial Ca2+ influx mechanisms have been identified. These are mitochondrial ryanodine receptor, mitochondrial uncoupling proteins, LETM1 (Ca2+/H+ exchanger), and MCU and its Ca2+ sensing regulatory subunit MICU1. Here, we briefly review recent progress in these and other reported mitochondrial Ca2+ influx pathways and their differences in kinetics, Ca2+ dependence, and pharmacological characteristics. Their potential physiological and pathological implications are also discussed.  相似文献   

15.
Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca2+ signaling may play a central role in this process. Free Ca2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca2+ uniporter machinery in mammals. MICU binds Ca2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca2+ in the matrix. Furthermore, Ca2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca2+ uptake by moderating influx, thereby shaping Ca2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca2+ signaling in plants.  相似文献   

16.
Aberrations in mitochondrial Ca2+ homeostasis have been associated with different pathological conditions, including neurological defects, cardiovascular diseases, and, in the last years, cancer. With the recent molecular identification of the mitochondrial calcium uniporter (MCU) complex, the channel that allows Ca2+ accumulation into the mitochondrial matrix, alterations in the expression levels or functioning in one or more MCU complex members have been linked to different cancers and cancer-related phenotypes. In this review, we will analyze the role of the uniporter and mitochondrial Ca2+ derangements in modulating cancer cell sensitivity to death, invasiveness, and migratory capacity, as well as cancer progression in vivo. We will also discuss some critical points and contradictory results to highlight the consequence of MCU complex modulation in tumor development.  相似文献   

17.
《BBA》2019,1860(12):148061
The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel. This complex consists of MCU, mitochondrial calcium uptake proteins (MICUs), MCU regulator 1 (MCUR1), essential MCU regulator element (EMRE), etc. MCU, which is the pore-forming subunit, has 2 highly conserved coiled-coil domains (CC1 and CC2); however, their functional roles are unknown. The yeast expression system of mammalian MCU and EMRE enables precise reconstitution of the properties of the mammalian MCU complex in yeast mitochondria. Using the yeast expression system, we here showed that, when MCU mutant lacking CC1 or CC2 was expressed together with EMRE in yeast, their mitochondrial Ca2+-uptake function was lost. Additionally, point mutations in CC1 or CC2, which were expected to prevent the formation of the coiled coil, also disrupted the Ca2+-uptake function. Thus, it is essential for the Ca2+ uptake function of MCU that the coiled-coil structure be formed in CC1 and CC2. The loss of function of those mutated MCUs was also observed in the mitochondria of a yeast strain lacking the yeast MCUR1 homolog. Also, in the D. discoideum MCU, which has EMRE-independent Ca2+-uptake function, the deletion of either CC1 or CC2 caused the loss of function. These results indicated that the critical functions of CC1 and CC2 were independent of other regulatory subunits such as MCUR1 and EMRE, suggesting that CC1 and CC2 might be essential for pore formation by MCUs themselves. Based on the tetrameric structure of MCU, we discussed the functional roles of the coiled-coil domains of MCU.  相似文献   

18.
Previous studies have suggested that the cellular Ca2+ and iron homeostasis, which can be regulated by mitochondrial calcium uniporter (MCU), is associated with oxidative stress, apoptosis and many neurological diseases. However, little is known about the role of MCU‐mediated Ca2+ and iron accumulation in traumatic brain injury (TBI). Under physiological conditions, MCU can be inhibited by ruthenium red (RR) and activated by spermine (Sper). In the present study, we used RR and Sper to reveal the role of MCU in mouse and neuron TBI models. Our results suggested that the Ca2+ and iron concentrations were obviously increased after TBI. In addition, TBI models showed a significant generation of reactive oxygen species (ROS), decrease in adenosine triphosphate (ATP), deformation of mitochondria, up‐regulation of deoxyribonucleic acid (DNA) damage and increase in apoptosis. Blockage of MCU by RR prevented Ca2+ and iron accumulation, abated the level of oxidative stress, improved the energy supply, stabilized mitochondria, reduced DNA damage and decreased apoptosis both in vivo and in vitro. Interestingly, Sper did not increase cellular Ca2+ and iron concentrations, but suppressed the Ca2+ and iron accumulation to benefit the mice in vivo. However, Sper had no significant impact on TBI in vitro. Taken together, our data demonstrated for the first time that blockage of MCU‐mediated Ca2+ and iron accumulation was essential for TBI. These findings indicated that MCU could be a novel therapeutic target for treating TBI.  相似文献   

19.
Peroxiredoxin‐5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca2+ homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca2+ fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH‐SY5Y cells to dissect the role of this enzyme in 1‐methyl‐4‐phenylpyridinium (MPP)+‐induced cell death. Our data show that mitochondria‐dependent apoptosis triggered by MPP+, assessed by the measurement of caspase‐9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca2+, Ca2+‐dependent activation of calpains and Bax cleavage. Finally, using Ca2+ channel inhibitors (Nimodipine, Dantrolene and 2‐APB), we show that Ca2+ release arises essentially from ER stores through 1,4,5‐inositol‐trisphosphate receptors (IP3R). Altogether, our results suggest that the MPP+ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca2+ transporters via a crosstalk between mitochondria and ER.  相似文献   

20.
Emerging findings suggest that two lineages of mitochondrial Ca2+ uptake participate during active and resting states: 1) the major eukaryotic membrane potential–dependent mitochondrial Ca2+ uniporter and 2) the evolutionarily conserved exchangers and solute carriers, which are also involved in ion transport. Although the influx of Ca2+ across the inner mitochondrial membrane maintains metabolic functions and cell death signal transduction, the mechanisms that regulate mitochondrial Ca2+ accumulation are unclear. Solute carriers—solute carrier 25A23 (SLC25A23), SLC25A24, and SLC25A25—represent a family of EF-hand–containing mitochondrial proteins that transport Mg-ATP/Pi across the inner membrane. RNA interference–mediated knockdown of SLC25A23 but not SLC25A24 and SLC25A25 decreases mitochondrial Ca2+ uptake and reduces cytosolic Ca2+ clearance after histamine stimulation. Ectopic expression of SLC25A23 EF-hand–domain mutants exhibits a dominant-negative phenotype of reduced mitochondrial Ca2+ uptake. In addition, SLC25A23 interacts with mitochondrial Ca2+ uniporter (MCU; CCDC109A) and MICU1 (CBARA1) while also increasing IMCU. In addition, SLC25A23 knockdown lowers basal mROS accumulation, attenuates oxidant-induced ATP decline, and reduces cell death. Further, reconstitution with short hairpin RNA–insensitive SLC25A23 cDNA restores mitochondrial Ca2+ uptake and superoxide production. These findings indicate that SLC25A23 plays an important role in mitochondrial matrix Ca2+ influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号