共查询到20条相似文献,搜索用时 15 毫秒
1.
Charusheila Ramkumar Yahui Kong Sally E. Trabucco Rachel M. Gerstein Hong Zhang 《Aging cell》2014,13(3):478-486
The age‐dependent decline in the self‐renewal capacity of stem cells plays a critical role in aging, but the precise mechanisms underlying this decline are not well understood. By limiting proliferative capacity, senescence is thought to play an important role in age‐dependent decline of stem cell self‐renewal, although direct evidence supporting this hypothesis is largely lacking. We have previously identified the E3 ubiquitin ligase Smurf2 as a critical regulator of senescence. In this study, we found that mice deficient in Smurf2 had an expanded hematopoietic stem cell (HSC) compartment in bone marrow under normal homeostatic conditions, and this expansion was associated with enhanced proliferation and reduced quiescence of HSCs. Surprisingly, increased cycling and reduced quiescence of HSCs in Smurf2‐deficient mice did not lead to premature exhaustion of stem cells. Instead, HSCs in aged Smurf2‐deficient mice had a significantly better repopulating capacity than aged wild‐type HSCs, suggesting that decline in HSC function with age is Smurf2 dependent. Furthermore, Smurf2‐deficient HSCs exhibited elevated long‐term self‐renewal capacity and diminished exhaustion in serial transplantation. As we found that the expression of Smurf2 was increased with age and in response to regenerative stress during serial transplantation, our findings suggest that Smurf2 plays an important role in regulating HSC self‐renewal and aging. 相似文献
2.
3.
Prion protein (PrPC), is a glycoprotein that is expressed on the cell surface. The current study examines the role of PrPC in early human embryogenesis using human embryonic stem cells (hESCs) and tetracycline‐regulated lentiviral vectors that up‐regulate or suppresses PrPC expression. Here, we show that expression of PrPC in pluripotent hESCs cultured under self‐renewal conditions induced cell differentiation toward lineages of three germ layers. Silencing of PrPC in hESCs undergoing spontaneous differentiation altered the dynamics of the cell cycle and changed the balance between the lineages of the three germ layers, where differentiation toward ectodermal lineages was suppressed. Moreover, over‐expression of PrPC in hESCs undergoing spontaneous differentiation inhibited differentiation toward lineages of all three germ layers and helped to preserve high proliferation activity. These results illustrate that PrPC is involved in key activities that dictate the status of hESCs including regulation of cell cycle dynamics, controlling the switch between self‐renewal and differentiation, and determining the fate of hESCs differentiation. This study suggests that PrPC is at the crossroads of several signaling pathways that regulate the switch between preservation of or departure from the self‐renewal state, control cell proliferation activity, and define stem cell fate. 相似文献
4.
Francesco Imperatore Julien Maurizio Stephanie Vargas Aguilar Clara J Busch Jérémy Favret Elisabeth Kowenz‐Leutz Wilfried Cathou Rebecca Gentek Pierre Perrin Achim Leutz Michael H Sieweke 《The EMBO journal》2017,36(16):2353-2372
Mature differentiated macrophages can self‐maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self‐renewal ability in vitro and in vivo. Overexpression of SIRT1 during bone marrow‐derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self‐renewal in culture. Furthermore, pharmacological SIRT1 inhibition in vivo reduced steady state and cytokine‐induced proliferation of alveolar and peritoneal macrophages. Mechanistically, SIRT1 inhibition negatively regulated G1/S transition, cell cycle progression and a network of self‐renewal genes. This included inhibition of E2F1 and Myc and concomitant activation of FoxO1, SIRT1 targets mediating cell cycle progression and stress response, respectively. Our findings indicate that SIRT1 is a key regulator of macrophage self‐renewal that integrates cell cycle and longevity pathways. This suggests that macrophage self‐renewal might be a relevant parameter of ageing. 相似文献
5.
6.
If Narcissus could have self‐renewed even once on seeing his own reflection, he would have died a happy man. Stem cells, on the other hand, have an enormous capacity for self‐renewal; in other words, the ability to replicate and generate more of the same. In adult organisms, stem cells reside in specialized niches within each tissue. They replenish tissue cells that are lost during normal homeostasis, and on injury they repair damaged tissue. The ability of a stem cell to self‐renew is governed by the dynamic interaction between the intrinsic proteins it expresses and the extrinsic signals that it receives from the niche microenvironment. Understanding the mechanisms governing when to proliferate and when to differentiate is vital, not only to normal stem cell biology, but also to ageing and cancer. This review focuses on elucidating conceptually, experimentally and mechanistically, our understanding of adult stem cell self‐renewal. We use skin as a paradigm for discussing many of the salient points about this process, but also draw on the knowledge gained from these and other adult stem cell systems to delineate shared underlying principles, as well as highlight mechanistic distinctions among adult tissue stem cells. By doing so, we pinpoint important questions that still await answers. 相似文献
7.
8.
9.
Pharmacological inhibition of S6K1 impairs self‐renewal and osteogenic differentiation of bone marrow stromal cells 下载免费PDF全文
Xiaohui Gu Xuejie Fu Jihang Lu Saijilafu Bin Li Zong‐ping Luo Jianquan Chen 《Journal of cellular biochemistry》2018,119(1):1041-1049
mTORC1 signaling not only plays important physiological roles in the regulation of proliferation and osteogenic differentiation of BMSCs, but also mediates exogenous Wnt‐induced protein anabolism and osteoblast differentiation. However, the downstream effectors of the mTORC1 signaling in the above processes are still poorly understood. In this study, we explored the specific role of S6K1, one of the major targets of the mTORC1 pathway, in BMSCs self ‐ renewal and osteogenic differentiation. We first found that S6K1 was active in primary mouse bone marrow stromal cells, and further activated upon osteogenic induction. We then determined the effects of S6K1 inhibition by LY2584702 Tosylate, a selective inhibitor of S6K1 (hereafter S6KI), using both primary mouse bone marrow stromal cells and ST2 cells. Colony‐Forming Unit‐Fibroblast (CFU‐F) assays showed that S6KI dramatically reduced the total number of colonies formed in primary BMSCs cultures. Under the basal osteogenic culture condition, S6KI significantly inhibited mRNA expression of osteoblast marker genes (Sp7, Bglap, Ibsp, and Col1a1), ALP activity and matrix mineralization. Upon Wnt3a treatments, S6KI inhibited Wnt3a‐induced osteoblast differentiation and expression of protein anabolism genes in ST2 cells, but to a much lesser degree than rapamycin (a specific inhibitor of mTORC1 signaling). Collectively, our findings have demonstrated that pharmacological inhibition of S6K1 impaired self ‐ renewal and osteogenic differentiation of BMSCs, but only partially suppressed exogenous Wnt3a‐induced osteoblast differentiation and protein anabolism. 相似文献
10.
Zuping Zhou Takintope Akinbiyi Lili Xu Melissa Ramcharan Daniel J. Leong Stephen J. Ros Alexis C. Colvin Mitchell B. Schaffler Robert J. Majeska Evan L. Flatow Hui B. Sun 《Aging cell》2010,9(5):911-915
Aging is a major risk factor for tendon injury and impaired tendon healing, but the basis for these relationships remains poorly understood. Here we show that rat tendon‐derived stem/progenitor cells (TSPCs) differ in both self‐renewal and differentiation capability with age. The frequency of TSPCs in tendon tissues of aged animals is markedly reduced based on colony formation assays. Proliferation rate is decreased, cell cycle progression is delayed and cell fate patterns are also altered in aged TSPCs. In particular, expression of tendon lineage marker genes is reduced while adipocytic differentiation increased. Cited2, a multi‐stimuli responsive transactivator involved in cell growth and senescence, is also downregulated in aged TSPCs while CD44, a matrix assembling and organizing protein implicated in tendon healing, is upregulated, suggesting that these genes participate in the control of TSPC function. 相似文献
11.
Borzo Gharibi Mandeep S. Ghuman Francis J. Hughes 《Journal of cellular and molecular medicine》2012,16(11):2789-2801
Understanding the mechanisms that direct mesenchymal stem cell (MSC) self‐renewal fate decisions is a key to most tissue regenerative approaches. The aim of this study here was to investigate the mechanisms of action of platelet‐derived growth factor receptor β (PDGFRβ) signalling on MSC proliferation and differentiation. MSC were cultured and stimulated with PDGF‐BB together with inhibitors of second messenger pathways. Cell proliferation was assessed using ethynyl‐2′‐deoxyuridine and phosphorylation status of signalling molecules assessed by Western Blots. To assess differentiation potentials, cells were transferred to adipogenic or osteogenic media, and differentiation assessed by expression of differentiation association genes by qRT‐PCR, and by long‐term culture assays. Our results showed that distinct pathways with opposing actions were activated by PDGF. PI3K/Akt signalling was the main contributor to MSC proliferation in response to activation of PDGFRβ. We also demonstrate a negative feedback mechanism between PI3K/Akt and PDGFR‐β expression. In addition, PI3K/Akt downstream signal cascades, mTOR and its associated proteins p70S6K and 4E‐BP1 were involved. These pathways induced the expression of cyclin D1, cyclin D3 and CDK6 to promote cell cycle progression and MSC proliferation. In contrast, activation of Erk by PDGFRβ signalling potently inhibited the adipocytic differentiation of MSCs by blocking PPARγ and CEBPα expression. The data suggest that PDGFRβ‐induced Akt and Erk pathways regulate opposing fate decisions of proliferation and differentiation to promote MSC self‐renewal. Thus, activation of multiple intracellular cascades is required for successful and sustainable MSC self‐renewal strategies. 相似文献
12.
MicroRNA‐10b regulates the renewal of spermatogonial stem cells through Kruppel‐like factor 4 下载免费PDF全文
Jiang Li Xiang Liu Xiaopeng Hu Geng G. Tian Wenzhi Ma Xiuying Pei Yanrong Wang Ji Wu 《Cell biochemistry and function》2017,35(3):184-191
MicroRNAs (miRs) are functionally important in spermatogenesis, which is the self‐renewal or differentiation of spermatogonial stem cells (SSCs). Here, we report a novel role for miR‐10b in regulating the self‐renewal of mouse SSCs. We showed that miR‐10b was highly expressed in mouse SSCs in vitro and enhanced SSC proliferation. Knockdown of miR‐10b significantly increased the apoptosis of SSCs compared with controls. Kruppel‐like factor 4 was found to be a target gene of miR‐10b in the enhancement of SSC proliferation. These findings further our understanding of the self‐renewal and differentiation of SSCs and provide a basis for the diagnosis, treatment, and prevention of male infertility. 相似文献
13.
Bin Zhou Haige Ye Chongyun Xing Bin Liang Haiying Li Linling Chen Xingzhou Huang Yanfei Wu Shenmeng Gao 《Journal of cellular and molecular medicine》2019,23(8):5246-5258
AML1‐ETO, the most common fusion oncoprotein by t (8;21) in acute myeloid leukaemia (AML), enhances hematopoietic self‐renewal and leukemogenesis. However, currently no specific therapies have been reported for t (8;21) AML patients as AML1‐ETO is still intractable as a pharmacological target. For this purpose, leukaemia cells and AML1‐ETO‐induced murine leukaemia model were used to investigate the degradation of AML1‐ETO by melatonin (MLT), synthesized and secreted by the pineal gland. MLT remarkedly decreased AML1‐ETO protein in leukemic cells. Meanwhile, MLT induced apoptosis, decreased proliferation and reduced colony formation. Furthermore, MLT reduced the expansion of human leukemic cells and extended the overall survival in U937T‐AML1‐ETO‐xenografted NSG mice. Most importantly, MLT reduced the infiltration of leukaemia blasts, decreased the frequency of leukaemia stem cells (LSCs) and prolonged the overall survival in AML1‐ETO‐induced murine leukaemia. Mechanistically, MLT increased the expression of miR‐193a, which inhibited AML1‐ETO expression via targeting its putative binding sites. Furthermore, MLT decreased the expression of β‐catenin, which is required for the self‐renewal of LSC and is the downstream of AML1‐ETO. Thus, MLT presents anti‐self‐renewal of LSC through miR‐193a‐AML1‐ETO‐β‐catenin axis. In conclusion, MLT might be a potential treatment for t (8;21) leukaemia by targeting AML1‐ETO oncoprotein. 相似文献
14.
Fam60a defines a variant Sin3a‐Hdac complex in embryonic stem cells required for self‐renewal 下载免费PDF全文
Gundula Streubel Darren J Fitzpatrick Giorgio Oliviero Andrea Scelfo Bruce Moran Sudipto Das Nayla Munawar Ariane Watson Kieran Wynne Gian Luca Negri Eugene T Dillon SriGanesh Jammula Karsten Hokamp Darran P O'Connor Diego Pasini Adrian P Bracken 《The EMBO journal》2017,36(15):2216-2232
Sin3a is the central scaffold protein of the prototypical Hdac1/2 chromatin repressor complex, crucially required during early embryonic development for the growth of pluripotent cells of the inner cell mass. Here, we compare the composition of the Sin3a‐Hdac complex between pluripotent embryonic stem (ES) and differentiated cells by establishing a method that couples two independent endogenous immunoprecipitations with quantitative mass spectrometry. We define the precise composition of the Sin3a complex in multiple cell types and identify the Fam60a subunit as a key defining feature of a variant Sin3a complex present in ES cells, which also contains Ogt and Tet1. Fam60a binds on H3K4me3‐positive promoters in ES cells, together with Ogt, Tet1 and Sin3a, and is essential to maintain the complex on chromatin. Finally, we show that depletion of Fam60a phenocopies the loss of Sin3a, leading to reduced proliferation, an extended G1‐phase and the deregulation of lineage genes. Taken together, Fam60a is an essential core subunit of a variant Sin3a complex in ES cells that is required to promote rapid proliferation and prevent unscheduled differentiation. 相似文献
15.
16.
Shuo Qiu Yunchu Sun Jia Xu Gen Wen Yaling Yu Tianyi Wu Yimin Chai 《Genesis (New York, N.Y. : 2000)》2019,57(9)
We aimed to investigate the potential beneficial effect of ferulic acid (FA) on stemness of human tendon‐derived stem cells (hTSCs) in vitro and to elucidate the underlying molecular mechanism. The self‐renewal ability of hTSCs was evaluated by colony formation and cell proliferation was determined by CCK‐8 kit. Adipogenesis, osteogenesis, and chondrogenesis were determined by Oil Red O, Alizarin Red, and Alcian Blue stainings, respectively. Relative mRNA levels of PPARγ, Col2A1, Acan, Runx2, HIF1α, and EGR1 were measured with real‐time PCR. Protein levels of HIF1α and EGR1 were detected by western blot. Direct binding of HIF1α with EGR1 promoter was analyzed by ChIP assay. Hypoxia‐induced expression of EGR1 was interrogated by luciferase reporter assay. We demonstrated that FA treatment improved both self‐renewal ability and multi‐differentiation potential of hTSCs. FA induced hypoxia which in turn upregulated EGR1 expression via direct association with its hypoxia response element consensus sequence. Furthermore, we showed that both HIF1α and EGR1 were required for the enhancing effects of FA on hTSC self‐renewal and differentiation. We hereby characterize the beneficial effect of FA on the stemness of hTSCs and highlight the critical role of HIF1α‐EGR1 axis in this process. 相似文献
17.
18.
Mi‐Young Son Min‐Jeong Kim Kweon Yu Deog‐Bon Koo Yee Sook Cho 《Journal of cellular and molecular medicine》2011,15(1):152-165
Neuropeptide Y (NPY) and NPY receptors are widely expressed in various organs and cell types and have been shown to have pleiotropic functions. However, their presence or role in human embryonic stem cells (hESCs) remains unknown. We now show that undifferentiated hESCs primarily express NPY and its Y1 and Y5 receptors. Inhibition of NPY signalling using either the selective NPY Y1 or Y5 receptor antagonist reduces the maintenance of self‐renewal and proliferation of undifferentiated hESCs. We also provide compelling evidence that exogenous NPY supports the long‐term growth of undifferentiated hESCs in the absence of feeder cell factors using only knockout serum replacement media. Further, NPY facilitates the use of chemically defined medium made up of N2/B27 supplement and basic fibroblast growth factor (bFGF) for hESC feeder‐free culture. Our results indicate that both Y1 and Y5 receptors appear to be involved in the NPY‐mediated activation of AKT/protein kinase B and extracellular signal‐regulated kinase 1/2 (ERK1/2) in hESCs. Notably, only Y1 receptor, but not Y5 receptor, is responsible for the NPY‐induced activation of cAMP‐response element binding (CREB) in hESCs. These results provide the first evidence that NPY and its Y1 and Y5 receptors have potential role in maintaining hESC self‐renewal and pluripotency. We demonstrate the underlying importance of NPY signalling and its usefulness in the development of a defined and xeno‐free culture condition for the large‐scale propagation of undifferentiated hESCs. 相似文献
19.
Double sex and mab‐3 related transcription factor 1 regulates differentiation and proliferation in dairy goat male germline stem cells 下载免费PDF全文
Yudong Wei Shufang Cai Fanglin Ma Ying Zhang Zhe Zhou Shuanshuan Xu Mengfei Zhang Sha Peng Jinlian Hua 《Journal of cellular physiology》2018,233(3):2537-2548