首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metastasis—a process that involves the migration of cells from the primary site to distant organs—is the leading cause of cancer-associated death. Improved technology and in-depth research on tumors have furthered our understanding of the various mechanisms involved in tumor metastasis. Metastasis is initiated by cancer cells of a specific phenotype, which migrate with the assistance of extracellular components and metastatic traits conferred via epigenetic regulation while modifying their behavior in response to the complex and dynamic human internal environment. In this review, we have summarized the general steps involved in tumor metastasis and their characteristics, incorporating recent studies and topical issues, including epithelial-mesenchymal transition, cancer stem cells, neutrophil extracellular traps, pre-metastatic niche, extracellular vesicles, and dormancy. Several feasible treatment directions have also been summarized. In addition, the correlation between cancer metastasis and lifestyle factors, such as obesity and circadian rhythm, has been illustrated.  相似文献   

2.
Most cancer patients die with metastatic disease, thus, good models that recapitulate the natural process of metastasis including a dormancy period with micrometastatic cells would be beneficial in developing treatment strategies. Herein we report a model of natural metastasis that balances time to complete experiments with a reasonable dormancy period, which can be used to better study metastatic progression. The basis for the model is a 4T1 triple negative syngeneic breast cancer model without resection of the primary tumor. A cell titration from 500 to 15,000 GFP tagged 4T1 cells implanted into fat pad number four of immune proficient eight week female BALB/cJ mice optimized speed of the model while possessing metastatic processes including dormancy and beginning of reactivation. The frequency of primary tumors was less than 50% in animals implanted with 500–1500 cells. Although implantation with over 10,000 cells resulted in 100% primary tumor development, the tumors and macrometastases formed were highly aggressive, lacked dormancy, and offered no opportunity for treatment. Implantation of 7,500 cells resulted in >90% tumor take by 10 days; in 30–60 micrometastases in the lung (with many animals also having 2–30 brain micrometastases) two weeks post-implantation, with the first small macrometastases present at five weeks; many animals displaying macrometastases at five weeks and animals becoming moribund by six weeks post-implantation. Using the optimum of 7,500 cells the efficacy of a chemotherapeutic agent for breast cancer, doxorubicin, given at its maximal tolerated dose (MTD; 1 mg/kg weekly) was tested for an effect on metastasis. Doxorubicin treatment significantly reduced primary tumor growth and lung micrometastases but the number of macrometastases at experiment end was not significantly affected. This model should prove useful for development of drugs to target metastasis and to study the biology of metastasis.  相似文献   

3.
Studies of human prostate carcinoma (PCA) have been hampered by only a few cell systems from already-metastatic human disease. We have developed a novel cell system by using tissue cultured CWR22R cells from a xenograft of a primary tumor from a human patient. These cells were transfected with the bacterial lacZ gene to maximize their detection during progression and metastasis in nude mice. LZ-CWR22R cells are extremely stable for lacZ expression over 25 passages and metastasize to lung, liver, and bone from the subcutis - major sites of metastasis of the human disease. A matrigel vehicle facilitated development of primary tumors and micrometastases in all organs. While some micrometastases developed into overt metastases, others remained as micrometastases for long periods of time, possibly providing a model of latency of metastatic disease. An experimental metastasis model (tail vein injection) also generated micrometastases in lung, liver, and bone with differing kinetics of formation and stability. Serial sections of many individual lung micrometastases within one hour of injection indicated considerable heterogeneity in cellular composition (from 1 to 19 cells/site) while liver sites at later times were comprised of only 1 or 2 cells (the size of bone sites were comparable to those of liver). By combining use of these histochemically-tagged PCA cell systems with high resolution molecular analyses (laser-capture microdissection), it will now be possible to analyze gene expression patterns characteristic of micrometastases developing in several different organs.  相似文献   

4.
Although a number of molecules have been implicated in the process of cancer metastasis, the organ-selective nature of cancer cells is still poorly understood. To investigate this issue, we established a metastasis model in mice with multiple organ dissemination by i.v. injection of human small cell lung cancer (SBC-5) cells. We analyzed gene-expression profiles of 25 metastatic lesions from four organs (lung, liver, kidney, and bone) using a cDNA microarray representing 23,040 genes and extracted 435 genes that seemed to reflect the organ specificity of the metastatic cells and the cross-talk between cancer cells and microenvironment. Furthermore, we discovered 105 genes that might be involved in the incipient stage of secondary-tumor formation by comparing the gene-expression profiles of metastatic lesions classified according to size (<1 or >2 mm) as either "micrometastases" or "macrometastases." This genome-wide analysis should contribute to a greater understanding of molecular aspects of the metastatic process in different microenvironments, and provide indicators for new strategies to predict and prevent metastasis.  相似文献   

5.
Distinct mechanisms of tumor invasion and metastasis   总被引:5,自引:0,他引:5  
Most cancer deaths are caused by metastasis rather than the primary tumor. Cancer cells invade normal tissue as epithelial sheets or single cells by inducing expression of programs characteristic of developmental processes. Depending on their tissue of origin, cancer cells subsequently spread to distinct target organs where they seed secondary tumors (metastasis). Recent experimental evidence suggests that metastasis requires changes not only in cancer cells but also in the tumor microenvironment and in the metastatic target site. For example, a premetastatic niche is formed in target organs that attract cancer cells. Understanding the distinct mechanisms used by cancer cells to form metastasis will enable better patient evaluation and the design of innovative therapeutic approaches.  相似文献   

6.
Metastasis accounts for 90% of cancer-related mortality. Brain metastases generally present during the late stages in the natural history of cancer progression. Recent advances in cancer treatment and management have resulted in better control of systemic disease metastatic to organs other than the brain and improved patient survival. However, patients who experience recurrent disease manifest an increasing number of brain metastases, which are usually refractory to therapies. To meet the new challenges of controlling brain metastasis, the research community has been tackling the problem with novel experimental models and research tools, which have led to an improved understanding of brain metastasis. The time-tested "seed-and-soil" hypothesis of metastasis indicates that successful outgrowth of deadly metastatic tumors depends on permissible interactions between the metastatic cancer cells and the site-specific microenvironment in the host organs. Consistently, recent studies indicate that the brain, the major component of the central nervous system, has unique physiological features that can determine the outcome of metastatic tumor growth. The current review summarizes recent discoveries on these tumor-brain interactions, and the potential clinical implications these novel findings could have for the better treatment of patients with brain metastasis.  相似文献   

7.
Although metastases from original (primary) tumors are highly studied, metastases from metastatic sites (secondary tumors) are far less studied. Here, using data from metastasis map (MetMap) project reported in a recent study (Jin et al. in Nature 588(7837): 331–336. 10.1038/s41586-020-2969-2, 2020), we found that human cancer cell lines isolated from metastatic sites have higher potential to metastasize to another site in mice, compared to human cancer cell lines isolated from primary sites, for certain types of cancer including liver, lung and pancreas cancer. In contrast, for cancer types such as ovarian and skin cancer, human cancer cell lines originated from primary tumors have increased metastatic potential in mice, compared to human cancer cell lines originated from metastatic sites. This preliminary analysis points that the potential of metastases to further metastasize compared to that of primary tumors might be cancer type-dependent, and further research is needed to understand why certain cancer cell lines isolated from metastatic sites are more likely to spread to other organs.  相似文献   

8.

Metastatic seeding of distant organs can occur in the very early stages of primary tumor development. Once seeded, these micrometastases may enter a dormant phase that can last decades. Curiously, the surgical removal of the primary tumor can stimulate the accelerated growth of distant metastases, a phenomenon known as metastatic blow-up. Recent clinical evidence has shown that the immune response can have strong tumor promoting effects. In this work, we investigate if the pro-tumor effects of the immune response can have a significant contribution to metastatic dormancy and metastatic blow-up. We develop an ordinary differential equation model of the immune-mediated theory of metastasis. We include both anti- and pro-tumor immune effects, in addition to the experimentally observed phenomenon of tumor-induced immune cell phenotypic plasticity. Using geometric singular perturbation analysis, we derive a rather simple model that captures the main processes and, at the same time, can be fully analyzed. Literature-derived parameter estimates are obtained, and model robustness is demonstrated through a time dependent sensitivity analysis. We determine conditions under which the parameterized model can successfully explain both metastatic dormancy and blow-up. The results confirm the significant active role of the immune system in the metastatic process. Numerical simulations suggest a novel measure to predict the occurrence of future metastatic blow-up in addition to new potential avenues for treatment of clinically undetectable micrometastases.

  相似文献   

9.
Lymph node metastasis (LNM) in many solid cancers is a well-known prognostic factor; however, it has been debated whether regional LNM simply reflects tumor aggressiveness or is a source for further tumor dissemination. Similarly, the metastatic process in head and neck cancer (HNC) has not been fully evaluated. Thus, we aimed to investigate the relative significance of LNM in metastatic cascade of HNC using functional imaging of HNC patients and molecular imaging in in vivo models. First, we analyzed 18Fluorodeoxyglucose positron emission tomography (PET) parameters of 117 patients with oral cancer. The primary tumor and nodal PET parameters were measured separately, and survival analyses were conducted on the basis of clinical and PET variables to identify significant prognostic factors. In multivariate analyses, we found that only the metastatic node PET values were significant. Next, we compared the relative frequency of lung metastasis in primary ear tumors versus lymph node (LN) tumors, and we tested the rate of lung metastasis in another animal model, in which each animal had both primary and LN tumors that were expressing different colors. As a result, LN tumors showed higher frequencies of lung metastasis compared to orthotopic primary tumors. In color-matched comparisons, the relative contribution to lung metastasis was higher in LN tumors than in primary tumors, although both primary and LN tumors caused lung metastases. In summary, tumors growing in the LN microenvironment spread to systemic sites more commonly than primary tumors in HNC, suggesting that the adequate management of LNM can reduce further systemic metastasis.  相似文献   

10.

Background  

Tumor metastasis is a frequent cause of treatment failure for cancer patients. A key feature of metastatic cancer cells is their invasive ability. Cysteine proteases contribute to invasive properties of many cancer cell types. To analyze the contribution of cysteine proteases to metastasis we have over-expressed in B16 melanoma cells the natural cysteine protease inhibitor, cystatin C. We measured in vitro invasion of cystatin over-expression clones with Boyden chamber type assays. Tail-vein injections of cells were used to compare lung tumor colonization. Subcutaneous tumor growth and tumor cell metastasis from primary tumors were also analyzed. Apoptosis of tumor cells was measured in lung tissues following melanoma cell injection.  相似文献   

11.
Extracellular vesicles (EVs), including exosomes, have a key role in the paracrine communication between organs and compartments. EVs shuttle virtually all types of biomolecules such as proteins, lipids, nucleic acids, metabolites and even pharmacological compounds. Their ability to transfer their biomolecular cargo into target cells enables EVs to play a key role in intercellular communication that can regulate cellular functions such as proliferation, apoptosis and migration. This has led to the emergence of EVs as a key player in tumor growth and metastasis through the formation of “tumor niches” in target organs. Recent data have also been shown that EVs may transform the microenvironment of primary tumors thus favoring the selection of cancer cells with a metastatic behavior. The release of EVs from resident non-malignant cells may contribute to the metastatic processes as well. However, cancer EVs may induce malignant transformation in resident mesenchymal stem cells, suggesting that the metastatic process is not exclusively due to circulating tumor cells. In this review, we outline and discuss evidence-based roles of EVs in actively regulating multiple steps of the metastatic process and how we can leverage EVs to impair metastasis.  相似文献   

12.
Metastasis of primary tumors progresses stepwise — from change in biochemistry, morphology, and migratory patterns of tumor cells to the emergence of receptors on their surface that facilitate directional migration to target organs followed by the formation of a specific microenvironment in a target organ that helps attachment and survival of metastatic cells. A set of specific genes and signaling pathways mediate this process under control of microRNA. The molecular mechanisms underlying biological processes associated with tumor metastasis are reviewed in this publication using ovarian cancer, which exhibits high metastatic potential, as an example. Information and data on the genes and regulatory microRNAs involved in the formation of cancer stem cells, epithelial–mesenchymal transition, reducing focal adhesion, degradation of extracellular matrix, increasing migration activity of cancer cells, formation of spheroids, apoptosis, autophagy, angiogenesis, formation of metastases, and development of ascites are presented. Clusters of microRNAs (miR-145, miR-31, miR-506, miR-101) most essential for metastasis of ovarian cancer including the families of microRNAs (miR-200, miR-214, miR-25) with dual role, which is different in different histological types of ovarian cancer, are discussed in detail in a section of the review.  相似文献   

13.
Beyond tumorigenesis: cancer stem cells in metastasis   总被引:38,自引:0,他引:38  
The importance of cancer stem cells (CSCs) in tumor-initiation has been firmly established in leukemia and recently reported for a variety of solid tumors. However, the role of CSCs in multistage cancer progression, particularly with respect to metastasis, has not been well-defined. Cancer metastasis requires the seeding and successful colonization of specialized CSCs at distant organs. The biology of normal stem cells and CSCs share remarkable similarities and may have important implications when applied to the study of cancer metastasis. Furthermore, overlapping sets of molecules and pathways have recently been identified to regulate both stem cell migration and cancer metastasis. These molecules constitute a complex network of cellular interactions that facilitate both the initiation of the pre-metastasis niche by the primary tumor and the formation of a nurturing organ microenvironment for migrating CSCs. In this review, we surveyed the recent advances in this dynamic field and propose a unified model of cancer progression in which CSCs assume a central role in both tumorigenesis and metastasis. Better understanding of CSCs as a fundamental component of the metastatic cascade will lead to novel therapeutic strategies against metastatic cancer.  相似文献   

14.
Loss of either lgl or brat gene activity in Drosophila larvae causes neoplastic brain tumors. Fragments of tumorous brains from either mutant transplanted into adult hosts over-proliferate, and kill their hosts within 2 weeks. We developed an in vivo assay for the metastatic potential of tumor cells by quantifying micrometastasis formation within the ovarioles of adult hosts after transplantation and determined that specific metastatic properties of lgl and brat tumor cells are different. We detected micrometastases in 15.8% of ovarioles from wild type host females 12 days after transplanting lgl tumor cells into their abdominal cavities. This frequency increased significantly with increased proliferation time. We detected micrometastases in 15% of ovarioles from wild type host females 10 days after transplanting brat tumor cells into their abdominal cavities. By contrast, this frequency did not change significantly with increased proliferation time. We found that nearly all lgl micrometastases co-express the neuronal cell marker, ELAV, and the glial cell marker, REPO. These markers are not co-expressed in normal brain cells nor in tumorous brain cells. This indicates deregulated gene expression in these metastatic cells. By contrast, most of the brat micrometastases expressed neither marker. While mutations in both lgl and brat cause neoplastic brain tumors, our results reveal that metastatic cells arising from these tumors have quite different properties. These data may have important implications for the treatment of tumor metastasis.  相似文献   

15.
Metastasis to organs other than lung is rarely observed in animal model systems of human prostate carcinoma (PCA), with the exception of already metastatic isolates of human PCA cultured for long periods of time. To analyze more directly the evolution of metastatic variants from primary PCA tumor isolates, the lacZ histochemical marker gene was transfected into the CWR22Rv1 cell line isolated from the CWR22R xenograft (primary tumor). Three clones of varying lacZ-expression stability were analyzed for tumorigenicity and progression in athymic nude mice. Clones B and D were highly tumorigenic in the subcutis; however, lacZ expression was highly unstable. In contrast, clone H demonstrated highly stable lacZ expression for >25 passages in culture or in animals. Clone H, injected sc in a PBS vehicle, gave a 15-40% tumorigenic take. All primary tumor-bearing animals exhibited micrometastases in lung and other organs. Clone H injected in a Matrigel vehicle gave 100% tumorigenicity, with all animals displaying micrometastases in lung, liver, and/or bone (lower frequency in brain and kidney). Overall, the relative frequency of micrometastasis to multiple organs was lung>liver=bone>brain>kidney. Overt metastases were never observed in the lung or bone but were occasionally found in liver. lacZ-transfected clone H CWR22Rv1 cells represent a much more accurate model of metastasis of PCA to the organs normally involved in progression of the human disease. Use of marker gene-tagged cells and other high-resolution molecular techniques will now permit analyses of the earliest events in PCA progression and micrometastasis.  相似文献   

16.
Breast cancer is the most common cancer in women, and this prevalence has a major impact on health worldwide. Localized breast cancer has an excellent prognosis, with a 5-year relative survival rate of 85%. However, the survival rate drops to only 23% for women with distant metastases. To date, the study of breast cancer metastasis has been hampered by a lack of reliable metastatic models. Here we describe a novel in vivo model using human breast cancer xenografts in NOD scid gamma (NSG) mice; in this model human breast cancer cells reliably metastasize to distant organs from primary tumors grown within the mammary fat pad. This model enables the study of the entire metastatic process from the proper anatomical site, providing an important new approach to examine the mechanisms underlying breast cancer metastasis. We used this model to identify gene expression changes that occur at metastatic sites relative to the primary mammary fat pad tumor. By comparing multiple metastatic sites and independent cell lines, we have identified several gene expression changes that may be important for tumor growth at distant sites.  相似文献   

17.
Metastasis is a major, life-threatening complication of cancer. The bloodstream is the most important disseminative route for cancer cells liberated from their parent tumors. Single circulating cancer cells are arrested in the microvasculature, where the vast majority are killed by rapid or slow processes, and the relatively few survivors grow into micrometastases. We review the underlying causes of one type of rapid cancer cell death in the microcirculation, namely, that caused by biomechanical interactions of cancer cells with microvessel walls, which may result in cell surface membrane expansion and lethal rupture. These lethal interactions appear to be important rate-regulators in hematogenous metastasis, and to dictate some aspects of metastatic patterns. Although these are not the only interactions involving cancer cells, in contrast to others involving cellular and humoral defense mechanisms, they have received comparatively little attention.  相似文献   

18.
Metastasis is a major, life-threatening complication of cancer. The bloodstream is the most important disseminative route for cancer cells liberated from their parent tumors. Single circulating cancer cells are arrested in the microvasculature, where the vast majority are killed by rapid or slow processes, and the relatively few survivors grow into micrometastases. We review the underlying causes of one type of rapid cancer cell death in the microcirculation, namely, that caused by biomechanical interactions of cancer cells with microvessel walls, which may result in cell surface membrane expansion and lethal rupture. These lethal interactions appear to be important rate-regulators in hematogenous metastasis, and to dictate some aspects of metastatic patterns. Although these are not the only interactions involving cancer cells, in contrast to others involving cellular and humoral defense mechanisms, they have received comparatively little attention.  相似文献   

19.
Breast cancer is the most common malignancy among women worldwide and is the most common cause of death for women between 35 and 50 years of age. Women with breast cancer are at risk of developing metastases for their entire lifetime and, despite local and systemic therapies, approximately 30% of breast cancer patients will relapse (Jemal et al., 2010). Nearly all breast cancer related deaths are due to metastatic disease, even though metastasis is considered to be an inefficient process. In some cases, tumor cells disseminate from primary sites at an early stage, but remain indolent for protracted periods of time before becoming overt, life-threatening tumors. Little is known about the mechanisms that cause these indolent tumors to grow into malignant disease. Because of this gap in our understanding, we are unable to predict which breast cancer patients are likely to experience disease relapse or develop metastases years after treatment of their primary tumor. A better understanding of the mechanisms and signals involved in the exit of tumor cells from dormancy would not only allow for more accurate selection of patients that would benefit from systemic therapy, but could also lead to the development of more targeted therapies to inhibit the signals that promote disease progression. In this review, we address the systemic, or "macroenvironmental", contribution to tumor initiation and progression and what is known about how a pro-tumorigenic systemic environment is established.  相似文献   

20.
The behavior and genetics of serous epithelial ovarian cancer (EOC) metastasis, the form of the disease lethal to patients, is poorly understood. The unique properties of metastases are critical to understand to improve treatments of the disease that remains in patients after debulking surgery. We sought to identify the genetic and phenotypic landscape of metastatic progression of EOC to understand how metastases compare to primary tumors. DNA copy number and mRNA expression differences between matched primary human tumors and omental metastases, collected at the same time during debulking surgery before chemotherapy, were measured using microarrays. qPCR and immunohistochemistry validated findings. Pathway analysis of mRNA expression revealed metastatic cancer cells are more proliferative and less apoptotic than primary tumors, perhaps explaining the aggressive nature of these lesions. Most cases had copy number aberrations (CNAs) that differed between primary and metastatic tumors, but we did not detect CNAs that are recurrent across cases. A six gene expression signature distinguishes primary from metastatic tumors and predicts overall survival in independent datasets. The genetic differences between primary and metastatic tumors, yet common expression changes, suggest that the major clone in metastases is not the same as in primary tumors, but the cancer cells adapt to the omentum similarly. Together, these data highlight how ovarian tumors develop into a distinct, more aggressive metastatic state that should be considered for therapy development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号