首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Postsynaptic density protein‐95 (PSD‐95) localizes AMPA‐type glutamate receptors (AMPARs) to postsynaptic sites of glutamatergic synapses. Its postsynaptic displacement is necessary for loss of AMPARs during homeostatic scaling down of synapses. Here, we demonstrate that upon Ca2+ influx, Ca2+/calmodulin (Ca2+/CaM) binding to the N‐terminus of PSD‐95 mediates postsynaptic loss of PSD‐95 and AMPARs during homeostatic scaling down. Our NMR structural analysis identified E17 within the PSD‐95 N‐terminus as important for binding to Ca2+/CaM by interacting with R126 on CaM. Mutating E17 to R prevented homeostatic scaling down in primary hippocampal neurons, which is rescued via charge inversion by ectopic expression of CaMR126E, as determined by analysis of miniature excitatory postsynaptic currents. Accordingly, increased binding of Ca2+/CaM to PSD‐95 induced by a chronic increase in Ca2+ influx is a critical molecular event in homeostatic downscaling of glutamatergic synaptic transmission.  相似文献   

2.
Changes in synaptic function require both qualitative and quantitative reorganization of the synaptic components. Ca2+ plays a central role in this process, but the mechanism has not been fully elucidated. Zhang et al report a novel mechanism whereby Ca2+/calmodulin (CaM) regulates the stability of the postsynaptic scaffold. Ca2+/CaM interacts with PSD-95, a core protein in the postsynaptic density (PSD) that supports synaptic signaling and structural components. Ca2+/CaM interferes with the palmitoylation of PSD-95, resulting in the dissociation of PSD-95 from the postsynaptic membrane. This process may explain the reduction of surface glutamate receptor observed during synaptic depression and homeostatic regulation of the synaptic response after prolonged neuronal activity.The adaptation of synaptic strength is a fundamental process for learning and memory. This form of synaptic plasticity is triggered by influx of Ca2+ from NMDA-type glutamate receptor (NMDAR), leading to the synaptic insertion or removal of AMPA-type glutamate receptor (AMPAR) and determines the strength of synaptic transmission. This process is mediated by the gross reorganization of the postsynaptic composition in a qualitative and quantitative fashion (Bosch et al, 2014). Importantly, the number of synaptic AMPAR is regulated by the number and affinity of postsynaptic ‘slots’, a hypothetical receptor binding site within a synapse, which is regulated during synaptic plasticity processes.PSD-95, a scaffolding protein at excitatory synapses, has been considered as a major candidate for the slot. It interacts with AMPAR through the TARP/stargazin protein family and modulates the synaptic localization of the receptor as well as the strength of synaptic transmission (El-Husseini et al, 2000). In turn, the localization of PSD-95 at the synapse is regulated by a constant cycle of palmitoylation by protein palmitoyl acyltransferases (PAT) at cysteines 3 and 5, which is required for efficient synaptic targeting of the protein, and depalmitoylation by palmitoyl protein thioesterases (PPT) (El-Husseini et al, 2002; Noritake et al, 2009). Activation of glutamate receptors increases depalmitoylated PSD-95 and releases it from the postsynaptic site (El-Husseini et al, 2002; Sturgill et al, 2009), whereas blockage of neuronal activity by TTX increases palmitoylated PSD-95 and targets it to the synapse (Noritake et al, 2009). However, it remains unclear how neuronal activity controls the palmitoylation/depalmitoylation cycle and the subsequent trafficking of PSD-95 to and from the synapse.In this issue of The EMBO Journal, using a combination of structural biological, biochemical, and cell biological approaches, Zhang et al (2014) revealed a novel mechanism by which Ca2+ regulates the synaptic localization of PSD-95. The authors found that Ca2+ complexed to CaM can bind PSD-95 within the first 13 residues—the exact location where palmitoylation takes place. Ca2+/CaM binds preferentially to unmodified PSD-95, thereby blocking the accessibility of the PAT to the palmitoylation sites. In contrast, Ca2+/CaM does not bind to palmitoylated PSD-95, and therefore, palmitoylated PSD-95 is subject to depalymitoylation by PPT. Overall, the net effect of Ca2+/CaM is a reduction of PSD-95 bound to the synaptic membrane (Fig(Fig1).1). Consistent with this, a PSD-95 mutant that was unable to bind Ca2+/CaM does not leave the synapse following glutamate/glycine treatment. Furthermore, the mutant PSD-95 showed an increased in synaptic accumulation, indicating that the treatment also increases palmitoylation activity but it is normally dominated by the depalmitoylating action of Ca2+/CaM binding (Noritake et al, 2009).Open in a separate windowFigure 1Calcium influx-induced release of PSD-95 and glutamate receptor from the synapseAt a synapse, cysteine residues of PSD-95 (C3 and C5) are under a continuous cycle of palmitoylation by protein palmitoyl acyltransferase (PAT), and depalmitoylation by palmitoyl protein thioesterase (PPT). A. Palmitoylated PSD-95 associates with the synaptic membrane and CDKL5 and serves as a ‘slot’ for AMPAR at the synapse through the interaction with TARP/stargazin. B. Upon glutamate stimulation, Ca2+ influx through NMDARs induces binding of Ca2+/CaM to PSD-95. Ca2+/CaM blocks the accessibility of PAT, thereby facilitating the depalmitoylation of PSD-95, which subsequently allows PSD-95 to dissociate from the synaptic membrane and CDKL5. C. The dissociation of PSD-95 from the synaptic membrane reduces the number of available ‘slots’ for AMPAR on the postsynaptic membrane, leading to a reduction of AMPAR-mediated synaptic transmission.The beauty of the work by Zhang et al (2014) is that the structure fully explains the biology. However, several important questions remain. Above all, it is still unclear when this mechanism would operate. Generally, the palmitoylation/depalmitoylation cycle is considered to be in the order of minutes. Therefore, for Ca2+/CaM to effectively reduce the palmitoylation of PSD-95, a prolonged influx of Ca2+ is required. In contrast, the rise in intracellular Ca2+ induced by a single excitatory postsynaptic current (EPSC) or dendritic action potential is in the order of milliseconds to seconds. A slow repetitive stimulation protocol, such as that used to induce long-term depression (LTD) (1 Hz, 15 min), may be effective in increasing Ca2+/CaM for a sufficiently long period of time. Homeostatic scaling induced by a prolonged increase in network activity (for example, via the pharmacological blockade of inhibitory synaptic transmission) may also be a possible mechanism for the Ca2+/CaM-mediated removal of synaptic PSD-95. In contrast, stimulation used to induce long-term potentiation (LTP) (a brief high-frequency stimulation such as 100 Hz, 1 s) may not be effective. Indeed, Bosch et al (2014) found that the induction of LTP at single dendritic spines in hippocampal CA1 pyramidal neurons does not decrease or increase PSD-95 during the first hour after induction even if the dendritic spine enlarges during this period.In this context, it is important to understand what impact Ca2+/CaM-mediated removal of synaptic PSD-95 has on synaptic transmission. If PSD-95 is indeed the slot for AMPAR, the Ca2+/CaM-mediated removal of synaptic PSD-95 is expected to reduce the synaptic transmission. The stimulation protocol used here by Zhang et al (bath application of glutamate/glycine) is similar to previously reported approaches to induce ‘chemical’ LTD and hence can provide an explanation for the decrease in PSD-95 from the synapse for 10–15 min after stimulation. The PSD-95 mutant that is unable to bind Ca2+/CaM will be useful to further analyze the link between the observed PSD-95-Ca2+/CaM interaction and synaptic plasticity.PSD-95 is also known to interact with the cyclin-dependent protein kinase-like kinase 5 (CDKL5) at the first 19 residues in a palmitoylation-dependent manner (Zhu et al, 2013). As expected, Ca2+/CaM binding also regulates CDKL5 association with PSD-95. The treatment of neurons with NMDA reduces the palmitoylation of PSD-95 and, concomitantly, the association with CDKL5. Mutations of CDKL5 and netrin-G1 gene have been reported in patients with an atypical form of Rett syndrome. Netrin-G1 ligand (NGL1) has been identified as an interaction partner and substrate of CDKL5 (Ricciardi et al, 2012). CDKL5 phosphorylates NGL1, and this phosphorylation stabilizes the interaction of NGL1 with PSD-95. Given that the Ca2+ signal only lasts a few milliseconds to seconds, it is important to investigate the spatiotemporal interaction between CaM, PSD-95, CDKL5, and NGL1 in dendritic spines during physiological and pathological conditions. In addition, CDKL5 can function as an upstream modulator of Rac signaling during development (Chen et al, 2010). Together with the fact that Rac also plays an important role in long-term potentiation, the PSD-95/CDKL5 complex might regulate Rac activity in the vicinity of the PSD.Other neuronal proteins including AMPAR subunit GluR1/2, glutamate receptor interacting protein (GRIP), G-protein-coupled receptors, δ-catenin, and small and trimeric G-proteins can also undergo palmitoylation, suggesting that this process plays an essential role in subcellular targeting and that these proteins can be regulated by activity (Kang et al, 2008). The question of whether Ca2+/CaM can regulate the palmitoylation of these proteins remains. Interestingly, the Ca2+/CaM interaction site of PSD-95 does not conform to a canonical IQ-motif, a CaM binding motif found in many other proteins (Zhang et al, 2014). Therefore, a bioinformatic approach is not possible at this point in time. This opens further directions of research.  相似文献   

3.
Ca2+ signalling in neurons through calmodulin (CaM) has a prominent function in regulating synaptic vesicle trafficking, transport, and fusion. Importantly, Ca2+–CaM binds a conserved region in the priming proteins Munc13‐1 and ubMunc13‐2 and thus regulates synaptic neurotransmitter release in neurons in response to residual Ca2+ signals. We solved the structure of Ca2+4–CaM in complex with the CaM‐binding domain of Munc13‐1, which features a novel 1‐5‐8‐26 CaM‐binding motif with two separated mobile structural modules, each involving a CaM domain. Photoaffinity labelling data reveal the same modular architecture in the complex with the ubMunc13‐2 isoform. The N‐module can be dissociated with EGTA to form the half‐loaded Munc13/Ca2+2–CaM complex. The Ca2+ regulation of these Munc13 isoforms can therefore be explained by the modular nature of the Munc13/Ca2+–CaM interactions, where the C‐module provides a high‐affinity interaction activated at nanomolar [Ca2+]i, whereas the N‐module acts as a sensor at micromolar [Ca2+]i. This Ca2+/CaM‐binding mode of Munc13 likely constitutes a key molecular correlate of the characteristic Ca2+‐dependent modulation of short‐term synaptic plasticity.  相似文献   

4.
HKC‐8 cells are a human‐derived renal proximal tubular cell line and provide a useful model system for the study of human renal cell function. In this study, we aimed to determine [Ca2+]i signalling mediated by P2 receptor in HKC‐8. Fura‐2 and a ratio imaging method were employed to measure [Ca2+]i in HKC‐8 cells. Our results showed that activation of P2Y receptors by ATP induced a rise in [Ca2+]i that was dependent on an intracellular source of Ca2+, while prolonged activation of P2Y receptors induced a rise in [Ca2+]i that was dependent on intra‐ and extracellular sources of Ca2+. Pharmacological and molecular data in this study suggests that TRPC4 channels mediate Ca2+ entry in coupling to activation of P2Y in HKC‐8 cells. U73221, an inhibitor of PI‐PLC, did not inhibit the initial ATP‐induced response; whereas D609, an inhibitor of PC‐PLC, caused a significant decrease in the initial ATP‐induced response, suggesting that P2Y receptors are coupled to PC‐PLC. Although P2X were present in HKC‐8, The P2X agonist, α,β me‐ATP, failed to cause a rise in [Ca2+]i. However, PPADS at a concentration of 100 µM inhibits the ATP‐induced rise in [Ca2+]i. Our results indicate the presence of functional P2Y receptors in HKC‐8 cells. ATP‐induced [Ca2+]i elevation via P2Y is tightly associated with PC‐PLC and TRP channel. J. Cell. Biochem. 109: 132–139, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
Zinc (Zn2+) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn2+ homeostasis is critical and involves different classes of molecules, including Zn2+ transporters. The ubiquitous Zn2+ transporter‐1 (ZNT‐1) is a transmembrane protein that pumps cytosolic Zn2+ to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT‐1 interacts with GluN2A‐containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT‐1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two‐hybrid screening, coimmunoprecipitation experiments and clustering assay in COS‐7 cells demonstrated that ZNT‐1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull‐down assays indicated GluN2A(1390–1464) domain as necessary for the binding to ZNT‐1. Most importantly, ZNT‐1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT‐1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD‐95 clusters and GluN2A surface levels, supporting the involvement of ZNT‐1 in the dynamics of excitatory PSD.

  相似文献   


7.
8.
The Bcl‐2 inhibitor FKBP38 is regulated by the Ca2+‐sensor calmodulin (CaM). Here we show a hitherto unknown low‐affinity cation‐binding site in the FKBP domain of FKBP38, which may afford an additional level of regulation based on electrostatic interactions. Fluorescence titration experiments indicate that in particular the physiologically relevant Ca2+ ion binds to this site. NMR‐based chemical shift perturbation data locate this cation‐interaction site within the β5–α1 loop (Leu90–Ile96) of the FKBP domain, which contains the acidic Asp92 and Asp94 side‐chains. Binding constants were subsequently determined for K+, Mg2+, Ca2+, and La3+, indicating that the net charge and the radius of the ion influences the binding interaction. X‐ray diffraction data furthermore show that the conformation of the β5–α1 loop is influenced by the presence of a positively charged guanidinium group belonging to a neighboring FKBP38 molecule in the crystal lattice. The position of the cation‐binding site has been further elucidated based on pseudocontact shift data obtained by NMR via titration with Tb3+. Elimination of the Ca2+‐binding capacity by substitution of the respective aspartate residues in a D92N/D94N double‐substituted variant reduces the Bcl‐2 affinity of the FKBP3835–153/CaM complex to the same degree as the presence of Ca2+ in the wild‐type protein. Hence, this charge‐sensitive site in the FKBP domain participates in the regulation of FKBP38 function by enabling electrostatic interactions with ligand proteins and/or salt ions such as Ca2+. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
CEACAM1, a homotypic transmembrane receptor with 12 or 72 amino acid cytosolic domain isoforms, is converted from inactive cis-dimers to active trans-dimers by calcium-calmodulin (Ca2+/CaM). Previously, the weak binding of Ca2+/CaM to the human 12 AA cytosolic domain was studied using C-terminal anchored peptides. We now show the binding of 15N labeled Phe-454 cytosolic domain peptides in solution or membrane anchored using NMR demonstrates a significant role for the lipid bilayer. Although binding is increased by the mutation Phe454Ala, this mutation was previously shown to abrogate actin binding. On the other hand, Ca2+/CaM binding is abrogated by phosphorylation of nearby Thr-457, a post-translation modification required for actin binding and subsequent in vitro lumen formation. Binding of Ca2+/CaM to a membrane proximal peptide from the long 72 AA cytosolic domain anchored to lipid nanodiscs was very weak compared to lipid free conditions, suggesting membrane specific effects between the two isoforms. NMR analysis of 15N labeled Ca2+/CaM with unlabeled peptides showed the C-lobe of Ca2+/CaM is involved in peptide interactions, and hydrophobic residues such as Met-109, Val-142 and Met-144 play important roles in binding peptide. This information was incorporated into transmembrane models of CEACAM1 binding to Ca2+/CaM. The lack of Ca2+/CaM binding to phosphorylated Thr-457, a residue we have previously shown to be phosphorylated by CaMK2D, also dependent on Ca2+/CaM, suggests stepwise binding of the cytosolic domain first to Ca2+/CaM and then to actin.  相似文献   

10.
The intracellular Ca2+ sensor calmodulin (CaM) regulates the cardiac Ca2+ release channel/ryanodine receptor 2 (RyR2), and mutations in CaM cause arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT) and long QT syndrome. Here, we investigated the effect of CaM mutations causing CPVT (N53I), long QT syndrome (D95V and D129G), or both (CaM N97S) on RyR2-mediated Ca2+ release. All mutations increased Ca2+ release and rendered RyR2 more susceptible to store overload-induced Ca2+ release (SOICR) by lowering the threshold of store Ca2+ content at which SOICR occurred and the threshold at which SOICR terminated. To obtain mechanistic insights, we investigated the Ca2+ binding of the N- and C-terminal domains (N- and C-domain) of CaM in the presence of a peptide corresponding to the CaM-binding domain of RyR2. The N53I mutation decreased the affinity of Ca2+ binding to the N-domain of CaM, relative to CaM WT, but did not affect the C-domain. Conversely, mutations N97S, D95V, and D129G had little or no effect on Ca2+ binding to the N-domain but markedly decreased the affinity of the C-domain for Ca2+. These results suggest that mutations D95V, N97S, and D129G alter the interaction between CaM and the CaMBD and thus RyR2 regulation. Because the N53I mutation minimally affected Ca2+ binding to the C-domain, it must cause aberrant regulation via a different mechanism. These results support aberrant RyR2 regulation as the disease mechanism for CPVT associated with CaM mutations and shows that CaM mutations not associated with CPVT can also affect RyR2. A model for the CaM-RyR2 interaction, where the Ca2+-saturated C-domain is constitutively bound to RyR2 and the N-domain senses increases in Ca2+ concentration, is proposed.  相似文献   

11.
Calmodulin‐dependent kinase II (CaMKII) is key for long‐term potentiation of synaptic AMPA receptors. Whether CaMKII is involved in activity‐dependent plasticity of other ionotropic glutamate receptors is unknown. We show that repeated pairing of pre‐ and postsynaptic stimulation at hippocampal mossy fibre synapses induces long‐term depression of kainate receptor (KAR)‐mediated responses, which depends on Ca2+ influx, activation of CaMKII, and on the GluK5 subunit of KARs. CaMKII phosphorylation of three residues in the C‐terminal domain of GluK5 subunit markedly increases lateral mobility of KARs, possibly by decreasing the binding of GluK5 to PSD‐95. CaMKII activation also promotes surface expression of KARs at extrasynaptic sites, but concomitantly decreases its synaptic content. Using a molecular replacement strategy, we demonstrate that the direct phosphorylation of GluK5 by CaMKII is necessary for KAR‐LTD. We propose that CaMKII‐dependent phosphorylation of GluK5 is responsible for synaptic depression by untrapping of KARs from the PSD and increased diffusion away from synaptic sites.  相似文献   

12.
13.
Eukaryotic elongation factor 2 kinase (eEF‐2K) regulates protein synthesis by phosphorylating eukaryotic elongation factor 2 (eEF‐2), thereby reducing its affinity for the ribosome and suppressing global translational elongation rates. eEF‐2K is regulated by calmodulin (CaM) through a mechanism that is distinct from that of other CaM‐regulated kinases. We had previously identified a minimal construct of eEF‐2K (TR) that is activated similarly to the wild‐type enzyme by CaM in vitro and retains its ability to phosphorylate eEF‐2 efficiently in cells. Here, we employ solution nuclear magnetic resonance techniques relying on Ile δ1‐methyls of TR and Ile δ1‐ and Met ε‐methyls of CaM, as probes of their mutual interaction and the influence of Ca2+ thereon. We find that in the absence of Ca2+, CaM exclusively utilizes its C‐terminal lobe (CaMC) to engage the N‐terminal CaM‐binding domain (CBD) of TR in a high‐affinity interaction. Avidity resulting from additional weak interactions of TR with the Ca2+‐loaded N‐terminal lobe of CaM (CaMN) at increased Ca2+ levels serves to enhance the affinity further. These latter interactions under Ca2+ saturation result in minimal perturbations in the spectra of TR in the context of its complex with CaM, suggesting that the latter is capable of driving TR to its final, presumably active conformation, in the Ca2+‐free state. Our data are consistent with a scenario in which Ca2+ enhances the affinity of the TR/CaM interactions, resulting in the increased effective concentration of the CaM‐bound species without significantly modifying the conformation of TR within the final, active complex.  相似文献   

14.
Calcium‐binding protein 1 (CaBP1), a neuron‐specific member of the calmodulin (CaM) superfamily, regulates the Ca2+‐dependent activity of inositol 1,4,5‐triphosphate receptors (InsP3Rs) and various voltage‐gated Ca2+ channels. Here, we present the NMR structure of full‐length CaBP1 with Ca2+ bound at the first, third, and fourth EF‐hands. A total of 1250 nuclear Overhauser effect distance measurements and 70 residual dipolar coupling restraints define the overall main chain structure with a root‐mean‐squared deviation of 0.54 Å (N‐domain) and 0.48 Å (C‐domain). The first 18 residues from the N‐terminus in CaBP1 (located upstream of the first EF‐hand) are structurally disordered and solvent exposed. The Ca2+‐saturated CaBP1 structure contains two independent domains separated by a flexible central linker similar to that in calmodulin and troponin C. The N‐domain structure of CaBP1 contains two EF‐hands (EF1 and EF2), both in a closed conformation [interhelical angles = 129° (EF1) and 142° (EF2)]. The C‐domain contains EF3 and EF4 in the familiar Ca2+‐bound open conformation [interhelical angles = 105° (EF3) and 91° (EF4)]. Surprisingly, the N‐domain adopts the same closed conformation in the presence or absence of Ca2+ bound at EF1. The Ca2+‐bound closed conformation of EF1 is reminiscent of Ca2+‐bound EF‐hands in a closed conformation found in cardiac troponin C and calpain. We propose that the Ca2+‐bound closed conformation of EF1 in CaBP1 might undergo an induced‐fit opening only in the presence of a specific target protein, and thus may help explain the highly specialized target binding by CaBP1.  相似文献   

15.
Dosemeci  A.  Vinade  L.  Winters  C. A.  Reese  T. S.  Tao-Cheng  J.-H. 《Brain Cell Biology》2002,31(8-9):605-612
NMDA-induced modification of postsynaptic densities (PSDs) was studied by immunoelectron microscopy. Treatment of cultured hippocampal neurons with NMDA for 2 min promotes a 2.3 fold thickening of the PSD and a 4 fold increase in PSD-associated CaMKII immunolabel. These changes are reversed 5 min after the removal of NMDA and Ca2+ from the medium. In addition, following NMDA treatment, PSDs exhibit a 7.5 fold increase in labeling with an antibody specific to the (Thr286) phospho-form of CaMKII, indicating that CaMKII translocated to the PSD is phosphorylated. When the phosphatase inhibitors, calyculin A or okadaic acid, are included in the medium, the NMDA-induced thickening of the PSD as well as the increase in PSD-associated CaMKII immunolabeling are largely maintained (75% and 88% of the peak values respectively) at 5 min after removal of NMDA and Ca2+ from the medium. These results imply that NMDA receptors can mediate activity-induced changes in the PSD and that phosphatases of type 1 and/or 2A are involved in the reversal of these changes.  相似文献   

16.
Trifluoperazine (TFP; Stelazine?) is an antagonist of calmodulin (CaM), an essential regulator of calcium‐dependent signal transduction. Reports differ regarding whether, or where, TFP binds to apo CaM. Three crystallographic structures (1CTR, 1A29, and 1LIN) show TFP bound to (Ca2+)4‐CaM in ratios of 1, 2, or 4 TFP per CaM. In all of these, CaM domains adopt the “open” conformation seen in CaM‐kinase complexes having increased calcium affinity. Most reports suggest TFP also increases calcium affinity of CaM. To compare TFP binding to apo CaM and (Ca2+)4‐CaM and explore differential effects on the N‐ and C‐domains of CaM, stoichiometric TFP titrations of CaM were monitored by 15N‐HSQC NMR. Two TFP bound to apo CaM, whereas four bound to (Ca2+)4‐CaM. In both cases, the preferred site was in the C‐domain. During the titrations, biphasic responses for some resonances suggested intersite interactions. TFP‐binding sites in apo CaM appeared distinct from those in (Ca2+)4‐CaM. In equilibrium calcium titrations at defined ratios of TFP:CaM, TFP reduced calcium affinity at most levels tested; this is similar to the effect of many IQ‐motifs on CaM. However, at the highest level tested, TFP raised the calcium affinity of the N‐domain of CaM. A model of conformational switching is proposed to explain how TFP can exert opposing allosteric effects on calcium affinity by binding to different sites in the “closed,” “semi‐open,” and “open” domains of CaM. In physiological processes, apo CaM, as well as (Ca2+)4‐CaM, needs to be considered a potential target of drug action. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
It is now generally accepted that non‐genomic steroids action precedes their genomic effects by modulation of intracellular signaling pathways within seconds after application. Ca2+ is a very potent and ubiquitous ion in all cells, and its concentration is precisely regulated. The most sensitive on Ca2+ increase is ATP‐consuming plasma membrane calcium pump (PMCA). The enzyme is coded by four genes, but isoforms diversity was detected in excitable and non‐excitable cells. It is the only ion pump stimulated directly by calmodulin (CaM). We examined the role of PMCA isoforms composition and CaM effect in regulation of Ca2+ uptake by estradiol, dehydroepiandrosterone (DHEA), pregnenolone (PREG), and their sulfates in a concentration range from 10?9 to 10?6 M, using the membranes from rat cortical synaptosomes, differentiated PC12 cells, and human erythrocytes. In excitable membranes with full set of PMCAs steroids apparently increased Ca2+ uptake, although to a variable extent. In most of the cases, CaM decreased transport by 30–40% below controls. Erythrocyte PMCA was regulated by the steroids somewhat differently than excitable cells. CaM strongly increased the potency for Ca2+ extrusion in membranes incubated with 17‐β‐estradiol and PREG. Our results indicated that steroids may sufficiently control cytoplasmic calcium concentration within physiological and therapeutic range. The response depended on the cell type, PMCA isoforms expression profile, CaM presence, and the steroids structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
An in vivo Ca2+ imaging technique was applied to examine the cellular mechanisms for attenuation of wind sensitivity in the identified primary sensory interneurons in the cricket cercal system. Simultaneous measurement of the cytosolic Ca2+ concentration ([Ca2+]i) and membrane potential of a wind‐sensitive giant interneuron (GI) revealed that successive air puffs caused the Ca2+ accumulation in dendrites and diminished the wind‐evoked bursting response in the GI. After tetanic stimulation of the presynaptic cercal sensory nerves induced a larger Ca2+ accumulation in the GI, the wind‐evoked bursting response was reversibly decreased in its spike number. When hyperpolarizing current injection suppressed the [Ca2+]i elevation during tetanic stimulation, the wind‐evoked EPSPs were not changed. Moreover, after suprathreshold tetanic stimulation to one side of the cercal nerve resulted in Ca2+ accumulation in the GI's dendrites, the slope of EPSP evoked by presynaptic stimulation of the other side of the cercal nerve was also attenuated for a few minutes after the [Ca2+]i had returned to the prestimulation level. This short‐term depression at synapses between the cercal sensory neurons and the GI (cercal‐to‐giant synapses) was also induced by a depolarizing current injection, which increased the [Ca2+]i, and buffering of the Ca2+ rise with a high concentration of a Ca2+ chelator blocked the induction of short‐term depression. These results indicate that the postsynaptic Ca2+ accumulation causes short‐term synaptic depression at the cercal‐to‐giant synapses. The dendritic excitability of the GI may contribute to postsynaptic regulation of the wind‐sensitivity via Ca2+‐dependent depression. © 2001 John Wiley & Sons, Inc. J Neurobiol 46: 301–313, 2001  相似文献   

19.
Calmodulin (CaM) is a primary calcium (Ca2+)‐signaling protein that specifically recognizes and activates highly diverse target proteins. We explored the molecular basis of target recognition of CaM with peptides representing the CaM‐binding domains from two Ca2+‐CaM‐dependent kinases, CaMKI and CaMKII, by employing experimentally constrained molecular simulations. Detailed binding route analysis revealed that the two CaM target peptides, although similar in length and net charge, follow distinct routes that lead to a higher binding frustration in the CaM–CaMKII complex than in the CaM–CaMKI complex. We discovered that the molecular origin of the binding frustration is caused by intermolecular contacts formed with the C‐domain of CaM that need to be broken before the formation of intermolecular contacts with the N‐domain of CaM. We argue that the binding frustration is important for determining the kinetics of the recognition process of proteins involving large structural fluctuations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
O'Donnell SE  Yu L  Fowler CA  Shea MA 《Proteins》2011,79(3):765-786
Calcineurin (CaN, PP2B, PPP3), a heterodimeric Ca2+‐calmodulin‐dependent Ser/Thr phosphatase, regulates swimming in Paramecia, stress responses in yeast, and T‐cell activation and cardiac hypertrophy in humans. Calcium binding to CaNB (the regulatory subunit) triggers conformational change in CaNA (the catalytic subunit). Two isoforms of CaNA (α, β) are both abundant in brain and heart and activated by calcium‐saturated calmodulin (CaM). The individual contribution of each domain of CaM to regulation of calcineurin is not known. Hydrodynamic analyses of (Ca2+)4‐CaM1–148 bound to βCaNp, a peptide representing its CaM‐binding domain, indicated a 1:1 stoichiometry. βCaNp binding to CaM increased the affinity of calcium for the N‐ and C‐domains equally, thus preserving intrinsic domain differences, and the preference of calcium for sites III and IV. The equilibrium constants for individual calcium‐saturated CaM domains dissociating from βCaNp were ~1 μM. A limiting Kd ≤ 1 nM was measured directly for full‐length CaM, while thermodynamic linkage analysis indicated that it was approximately 1 pM. βCaNp binding to 15N‐(Ca2+)4‐CaM1–148 monitored by 15N/1HN HSQC NMR showed that association perturbed the N‐domain of CaM more than its C‐domain. NMR resonance assignments of CaM and βCaNp, and interpretation of intermolecular NOEs observed in the 13C‐edited and 12C‐14N‐filtered 3D NOESY spectrum indicated anti‐parallel binding. The sole aromatic residue (Phe) located near the βCaNp C‐terminus was in close contact with several residues of the N‐domain of CaM outside the hydrophobic cleft. These structural and thermodynamic properties would permit the domains of CaM to have distinct physiological roles in regulating activation of βCaN. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号