首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from Ochrobactrum sp. M231 [Ochr-methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within Ochr-MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The T m and T 50 of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for Ochr-MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.  相似文献   

2.
A lip gene from a Bacillus isolate was cloned and expressed in E. coli. By thermal denaturation analysis, T1/2 of lipase was observed to be 7 min at 50°C with less than 10% activity after 1 h incubation at 50°C. To expand the functionality of cloned lipase, attempts have been made to create thermostable variants of lip gene. A lipase variant with an isoleucine to threonine amino acid substitution at the protein surface was isolated that demonstrated higher thermostability than its wild type predecessor. To explore the structure–function relationship, the lip gene product of wild type (WT) and mutant was characterized in detail. The mutation enhanced the specific activity of enzyme by 2-folds when compared with WT. The mutant enzyme showed enhanced T1/2 of 21 min at 50°C. The kinetic parameters of the mutant enzyme were significantly altered. The mutant enzyme displayed higher affinity for substrate (decreased K m ) in comparison to the wild type. The k cat and catalytic efficiency (k cat/K m ) of mutant were also enhanced by two and five times, respectively, as compared with the WT. The mutation resides on the part of helix which is exposed to the solvent and away from the catalytic triad. The replacement of a solvent exposed hydrophobic residue (Ile) in WT with a hydrophilic residue (Thr) in mutant might impart thermostability to the protein structure.  相似文献   

3.
We used site-specific mutagenesis by targeting E179 and F190 on the structure of photoprotein Mnemiopsin 2 (Mn2) from Mnemiopsis leidyi. The tertiary structure of E179S and F190L mutants was made by the MODELLER program. Far-ultraviolet circular dichroism data showed that the overall secondary structural content of photoprotein is not changed upon mutation, however the helicity and stabilizing interactions in helical structure decreases in mutants as compared with the wild-type (WT) photoprotein. Fluorescence spectra data revealed that the tertiary structure of the mutants is more compact than that of WT Mn2. According to the heat-induced denaturation experiments data, the melting temperature (Tm) for the unfolding of tertiary structure of the F190L variant increases by 3°C compared with that of the WT and E179S mutant. Interestingly, the conformational enthalpy of the F190L mutant (86 kcal mol−1) is considerably lower than those in the WT photoprotein (102 kcal mol−1) and E179S mutant (106 kcal mol−1). The significant difference in the enthalpy of the thermal unfolding process could be explained by considering that the thermally denatured state of the F190L mutant is structurally less expanded than the WT and E179S variants. Bioluminescence activity data showed that the maximum characteristic wavelengths of the mutants undergo blue shift as compared with the WT protein. Initial intensity of the F190L and E179S variants was recorded to be 137.5% and 55.9% of the WT protein, respectively.  相似文献   

4.
Random mutagenesis was used to create a library of chimeric dextranase (dex1) genes. A plate-screening protocol was developed with improved thermostability as a selection criterion. The mutant library was screened for active dextranase variants by observing clearing zones on dextran-blue agar plates at 50°C after exposure to 68°C for 2 h, a temperature regime at which wild-type activity was abolished. A number of potentially improved variants were identified by this strategy, five of which were further characterised. DNA sequencing revealed ten nucleotide substitutions, ranging from one to four per variant. Thermal inactivation studies showed reduced (2.9-fold) thermostability for one variant and similar thermostability for a second variant, but confirmed improved thermostability for three mutants with 2.3- (28.9 min) to 6.9-fold (86.6 min) increases in half-lives at 62°C compared to that of the wild-type enzyme (12.6 min). Using a 10-min assay, apparent temperature optima of the variants were similar to that of the wild type (T opt 60°C). However, one of these variants had increased enzyme activity. Therefore, the first-generation dextranase mutant pool obtained in this study has sufficient molecular diversity for further improvements in both thermostability and activity through recombination (gene shuffling).  相似文献   

5.
Wu  Zhiyun  Deng  Wenfeng  Tong  Yapei  Liao  Qian  Xin  Dongmin  Yu  Huashun  Feng  Juan  Tang  Lixia 《Applied microbiology and biotechnology》2017,101(8):3201-3211

As a crucial factor for biocatalysts, protein thermostability often arises from a combination of factors that are often difficult to rationalize. In this work, the thermostable nature of halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) was systematically explored using a combinatorial directed evolution approach. For this, a mutagenesis library of HheC mutants was first constructed using error-prone PCR with low mutagenesis frequency. After screening approximately 2000 colonies, six mutants with eight mutation sites were obtained. Those mutation sites were subsequently combined by adopting several rounds of iterative saturation mutagenesis (ISM) approach. After four rounds of saturation mutagenesis, one best mutant ISM-4 with a 3400-fold improvement in half-life (t 1/2) inactivation at 65 °C, 18 °C increase in apparent T m value, and 20 °C increase in optimum temperature was obtained, compared to wild-type HheC. To the best of our knowledge, the mutant represents the most thermostable HheC variant reported up to now. Moreover, the mutant was as active as wild-type enzyme for the substrate 1,3-dichloro-2-propanol, and they remained most enantioselectivity of wild-type enzyme in the kinetic resolution of rac-2-chloro-1-phenolethanol, exhibiting a great potential for industrial applications. Our structural investigation highlights that surface loop regions are hot spots for modulating the thermostability of HheC, the residues located at these regions contribute to the thermostability of HheC in a cooperative way, and protein rigidity and oligomeric interface connections contribute to the thermostability of HheC. All of these essential factors could be used for further design of an even more thermostable HheC, which, in turn, could greatly facilitate the application of the enzyme as a biocatalyst.

  相似文献   

6.
The alkaline amylase requires high resistance towards chemical oxidation for use in the detergent and textile industries. This work aims to improve the oxidative stability of alkaline amylase from alkaliphilic Alkalimonas amylolytica by site‐directed mutagenesis based on the enzyme structure model. Five mutants were created by individually replacing methionine at positions 145, 214, 229, 247, and 317 in the amino acid sequence of alkaline amylase with oxidative‐resistant serine. The pH stability of the mutant enzymes was almost the same as that of the wild‐type (WT) enzyme (pH 7.0–11.0). The stable temperature range of the mutant enzymes M145S and M247S decreased from <50°C of the WT to <40°C, while the thermal stability of the other three mutant enzymes (M214S, M229S, and M317S) was almost the same as that of the WT enzyme. The catalytic efficiency (kcat/Km) of all the mutant enzymes decreased when compared to WT enzyme. The mutant enzymes showed increased activity in the presence of surfactants Tween‐60 and sodium dodecyl sulfate. When incubated with 500 mM H2O2 at 35°C for 5 h, the WT enzyme retained only 13.3% of its original activity, while the mutant enzymes M145S, M214S, M229S, M247S, and M317S retained 55.6, 70.2, 54.2, 62.5, and 46.4% of the original activities, respectively. The results indicated that the substitution of methionine residues at the catalytic domains with oxidative‐resistant serine can significantly improve the oxidative stability of alkaline amylase. This work provides an effective strategy to improve the oxidative stability of amylase, and the high oxidation resistance of the mutant enzymes shows their potential applications in the detergent and textile industries. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

7.
We studied the difference in thermostability of photosystem Ⅱ (PSII) and leaf lipid composition between a T-DNA insertion mutant rice (Oryza sativa L.) VG28 and its wild type Zhonghuau. Native green gel and SDS-PAGE electrophoreses revealed that the mutant VG28 lacked all light-harvesting chlorophyll a/b protein complexes. Both the mutant and wild type were sensitive to high temperatures, and the maximal efficiency of PSII photochemistry (FJ Fm) and oxygen-evolving activity of PSII in leaves significantly decreased with increasing temperature. However, the PSII activity of the mutant was markedly more sensitive to high temperatures than that of the wild type. Lipid composition analysis showed that the mutant had less phosphatidylglycerol and sulfoquinovosyl diacylglycerol compared with the wild type. Fatty acid analysis revealed that the mutant had an obvious decrease in the content of 16:1t and a marked increase in the content of 18:3 compared with the wild type. The effects of lipid composition and unsaturation of membrane lipids on the thermostability of PSII are discussed.  相似文献   

8.
Applications of lipases are mainly based on their catalytic efficiency and substrate specificity. In this study, circular permutation (CP), an unconventional protein engineering technique, was employed to acquire active mutants of Yarrowia lipolytica lipase Lip8p. A total of 21 mutant lipases exhibited significant shifts in substrate specificity. Cp128, the most active enzyme mutant, showed higher catalytic activity (14.5-fold) and higher affinity (4.6-fold) (decreased K m) to p-nitrophenyl-myristate (pNP-C14) than wild type (WT). Based on the three-dimensional (3D) structure model of the Lip8p, we found that most of the functional mutation occurred in the surface-exposed loop region in close proximity to the lid domain (S112–F122), which implies the steric effect of the lid on lipase activity and substrate specificity. The temperature properties of Cp128 were also investigated. In contrast to the optimal temperature of 45 °C for the WT enzyme, Cp128 exhibited the maximal activity at 37 °C. But it is noteworthy that there is no change in thermostability.  相似文献   

9.
Lipase B from Candida antarctica (CalB) is a versatile biocatalyst for various bioconversions. In this study, the thermostability of CalB was improved through the introduction of a new disulfide bridge. Analysis of the B‐factors of residue pairs in CalB wild type (CalB‐WT) followed by simple flexibility analysis of residues in CalB‐WT and its designated mutants using FIRST server were newly proposed to enhance the selective power of two computational tools (MODIP and DbD v1.20) to predict the possible disulfide bonds in proteins for the enhancement of thermostability. Five residue pairs (A162‐K308, N169‐F304, Q156L163, S50‐A273, and S239C‐D252C) were chosen and the respective amino acid residues were mutated to cysteine. In the results, CalB A162C‐K308C showed greatly improved thermostability while maintaining its catalytic efficiency compared to that of CalB‐WT. Remarkably, the temperature at which 50% of its activity remained after 60‐min incubation (T) of CalB A162C_K308C was increased by 8.5°C compared to that of CalB‐WT (55 and 46.5°C, respectively). Additionally, the half‐life at 50°C of CalB A162C‐K308C was 4.5‐fold higher than that of CalB‐WT (220 and 49 min, respectively). The improvement of thermostability of CalB A162C‐K308C was elucidated at the molecular level by molecular dynamics (MD) simulation. Biotechnol. Bioeng. 2012; 109:867–876. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
In order to improve the thermostability of Escherichia coli AppA phytase, Error-prone PCR was used to randomize mutagenesis appA gene, and a gene mutation library was constructed. A mutant I408L was selected from the library by the method of high-throughput screening with 4-methyl-umbelliferylphosphate (4-MUP). The appA gene of the mutant was cloned and expressed in E. coli Origami (DE3). The recombinant protein was purified by Ni-affinity chromatography, and the enzymatic features were analyzed. The results indicated that AppA phytase activities of mutant I408L and wild-type (WT) strain remained at 51.3 and 28%, respectively, after treatment at 85°C for 5 min. It means that the thermostability enhancement of AppA phytase I408L was 23.3% more as compared with WT. The K m of both phytase were 0.18 and 0.25 mM, respectively, which indicated that the catalyzing efficiency of I408L was improved. AppA phytase of mutant I408L showed a significant enhancement against trypsin, which was nearly three times compared with WT. In addition, AppA phytase of mutant could be activated by Mg2+ and Mn2+; in contrast, it could be inhibited by Ca2+, Co2+, Cu2+, and K+ in varying degrees, and the enzymatic activity was almost lost the presence of Fe3+ and Zn2+. It appears that screening thermotolerant phytase of E. coli by high throughput screening with a fluorescence substrate is a fast, simple, and effective method. The mutant I408L obtained in this study could be used for the large-scale commercial production of phytase.  相似文献   

11.
1,3–1,4-β-glucanase is an important biocatalyst in brewing industry and animal feed industry, while its low thermostability often reduces its application performance. In this study, the thermostability of a mesophilic β-glucanase from Bacillus terquilensis was enhanced by rational design and engineering of disulfide bonds in the protein structure. Protein spatial configuration was analyzed to pre-exclude the residues pairs which negatively conflicted with the protein structure and ensure the contact of catalytic center. The changes in protein overall and local flexibility among the wild-type enzyme and the designated mutants were predicted to select the potential disulfide bonds for enhancement of thermostability. Two residue pairs (N31C-T187C and P102C-N125C) were chosen as engineering targets and both of them were proved to significantly enhance the protein thermostability. After combinational mutagenesis, the double mutant N31C-T187C/P102C-N125C showed a 48.3% increase in half-life value at 60°C and a 4.1°C rise in melting temperature (Tm) compared to wild-type enzyme. The catalytic property of N31C-T187C/P102C-N125C mutant was similar to that of wild-type enzyme. Interestingly, the optimal pH of double mutant was shifted from pH6.5 to pH6.0, which could also increase its industrial application. By comparison with mutants with single-Cys substitutions, the introduction of disulfide bonds and the induced new hydrogen bonds were proved to result in both local and overall rigidification and should be responsible for the improved thermostability. Therefore, the introduction of disulfide bonds for thermostability improvement could be rationally and highly-effectively designed by combination with spatial configuration analysis and molecular dynamics simulation.  相似文献   

12.
For the development of a method capable of predicting single point mutations substantially affecting protein thermostability, we studied the effect of the E85R and R82E mutations on the thermostability of thioredoxins from Escherichia coli (Trx) andBacillus acidocaldarius (BacTrx), respectively. The basic method of investigation was the molecular dynamics simulation of 3D protein models in an explicit solvent at different temperatures (300 and 373 K). Some thermolabile regions in Trx, BacTrx, and their mutants were revealed by analyzing the temperature effect on the molecular dynamics of the protein molecule. The effect of single point mutations on the temperature changes of the protein conformation flexibility in several thermolabile regions was found. The results of the simulations are in accord with experimental data indicating that the mutation E85R increases Trx thermostability, whereas the mutation R82E decreases BacTrx thermostability. The thermostability of these proteins was revealed to depend on ionic interactions between the thermolabile regions. The single point mutations change the parameters of these interactions and make them more favorable in the E85R-Trx mutant and less favorable in the R82E-BacTrx mutant.  相似文献   

13.
Thermostability has been considered as a requirement in the starch processing industry to maintain high catalytic activity of pullulanase under high temperatures. Four data driven rational design methods (B-FITTER, proline theory, PoPMuSiC-2.1, and sequence consensus approach) were adopted to identify the key residue potential links with thermostability, and 39 residues of Bacillus acidopullulyticus pullulanase were chosen as mutagenesis targets. Single mutagenesis followed by combined mutagenesis resulted in the best mutant E518I-S662R-Q706P, which exhibited an 11-fold half-life improvement at 60 °C and a 9.5 °C increase in Tm. The optimum temperature of the mutant increased from 60 to 65 °C. Fluorescence spectroscopy results demonstrated that the tertiary structure of the mutant enzyme was more compact than that of the wild-type (WT) enzyme. Structural change analysis revealed that the increase in thermostability was most probably caused by a combination of lower stability free-energy and higher hydrophobicity of E518I, more hydrogen bonds of S662R, and higher rigidity of Q706P compared with the WT. The findings demonstrated the effectiveness of combined data-driven rational design approaches in engineering an industrial enzyme to improve thermostability.  相似文献   

14.
In this study, we enhanced the catalytic efficiency and thermostability of keratinase KerSMD by replacing its N/C‐terminal domains with those from a homologous protease, KerSMF, to degrade feather waste. Replacement of the N‐terminal domain generated a mutant protein with more than twofold increased catalytic activity towards casein. Replacement of the C‐terminal domain obviously improved keratinolytic activity and increased the kcat/Km value on a synthetic peptide, succinyl‐Ala‐Ala‐Pro‐Phe‐p‐nitroanilide, by 54.5%. Replacement of both the N‐ and C‐terminal domains generated a more stable mutant protein, with a Tm value of 64.60 ± 0.65°C and a half‐life of 244.6 ± 2 min at 60°C, while deletion of the C‐terminal domain from KerSMD or KerSMF resulted in mutant proteins exhibiting high activity under mesophilic conditions. These findings indicate that the pre‐peptidase C‐terminal domain and N‐propeptide are not only important for substrate specificity, correct folding and thermostability but also support the ability of the enzyme to convert feather waste into feed additives.  相似文献   

15.

Increased demand of enzymes for industrial use has led the scientists towards protein engineering techniques. In different protein engineering strategies, rational approach has emerged as the most efficient method utilizing bioinformatics tools to produce enzymes with desired reaction kinetics; physiochemical (temperature, pH, half life, etc) and biological (selectivity, specificity, etc.) characteristics. Xylanase is one of the widely used enzymes in paper and food industry to degrade xylan component present in plant pulp. In this study endo 1,4-β-xylanase (Xyl-11A) from Bacillus halodurans C-125 was cloned in pET-22b (+) vector and expressed in Escherichia coli BL21 (DE3) expression strain. The enzyme had Michaelis constant Km of 1.32 mg ml?1 birchwoodxylan (soluble form) and maximum reaction velocity (Vmax) 73.53 mmol min?1 mg?1 with an optimum temperature of 75 °C and pH 9.0. The thermostability analysis showed that enzyme retained more than 80% of its residual activity when incubated at 75 °C for 2 h. In addition, to increase Xyl-11A thermostability, an in-silico analysis was performedto identify the hot spot amino acid residues. Consensus-based amino acid substitution was applied to evaluate multiple sequence alignment of homologs and identified 20 amino acids positions by following Jensen-Shnnon Divergence method. 3D models of 20 selected mutants were analyzed for conformational transition in protein structures by using NMSim server. Two selected mutants T6K and I17M of Xyl-11A retained 40, 60% residual activity respectively, at 85 °C for 120 min as compared to wild type enzyme which retained 37% initial activity under same conditions, confirming the enhanced thermostability of mutants. The present study showed a good approach for the identification of promising amino acid residues responsible for enhancing the thermostability of enzymes of industrial importance.

  相似文献   

16.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) plays a central role in carbon dioxide fixation on our planet. Rubisco from a hyperthermophilic archaeon Thermococcus kodakarensis (Tk‐Rubisco) shows approximately twenty times the activity of spinach Rubisco at high temperature, but only one‐eighth the activity at ambient temperature. We have tried to improve the activity of Tk‐Rubisco at ambient temperature, and have successfully constructed several mutants which showed higher activities than the wild‐type enzyme both in vitro and in vivo. Here, we designed new Tk‐Rubisco mutants based on its three‐dimensional structure and a sequence comparison of thermophilic and mesophilic plant Rubiscos. Four mutations were introduced to generate new mutants based on this strategy, and one of the four mutants, T289D, showed significantly improved activity compared to that of the wild‐type enzyme. The crystal structure of the Tk‐Rubisco T289D mutant suggested that the increase in activity was due to mechanisms distinct from those involved in the improvement in activity of Tk‐Rubisco SP8, a mutant protein previously reported to show the highest activity at ambient temperature. Combining the mutations of T289D and SP8 successfully generated a mutant protein (SP8‐T289D) with the highest activity to date both in vitro and in vivo. The improvement was particularly pronounced for the in vivo activity of SP8‐T289D when introduced into the mesophilic, photosynthetic bacterium Rhodopseudomonas palustris, which resulted in a strain with nearly two‐fold higher specific growth rates compared to that of a strain harboring the wild‐type enzyme at ambient temperature. Proteins 2016; 84:1339–1346. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
The thermal stability and catalytic activity of phospholipase A1 from Serratia sp. strain MK1 were improved by evolutionary molecular engineering. Two thermostable mutants were isolated after sequential rounds of error-prone PCR performed to introduce random mutations and filter-based screening of the resultant mutant library; we determined that these mutants had six (mutant TA3) and seven (mutant TA13) amino acid substitutions. Different types of substitutions were found in the two mutants, and these substitutions resulted in an increase in nonploar residues (mutant TA3) or in differences between side chains for polar or charged residues (mutant TA13). The wild-type and mutant enzymes were purified, and the effect of temperature on the stability and catalytic activity of the enzymes was investigated. The melting temperatures of the TA3 and TA13 enzymes were increased by 7 and 11°C, respectively, compared with the melting temperature of the wild-type enzyme. Thus, we found that evolutionary molecular engineering was an effective and efficient approach for increasing thermostability without compromising enzyme activity.  相似文献   

18.
-Amino-acid amidases, which catalyze the stereospecific hydrolysis of -amino-acid amide to yield -amino acid and ammonia, have attracted increasing attention as catalysts for stereospecific production of -amino acids. We screened for the enzyme variants with improved thermostability generated by a directed evolution method with the goal of the application of evolved enzyme to the production of -amino acids. Random mutagenesis by error-prone PCR and a filter-based screening was repeated twice, and as a result the most thermostable mutant BFB40 was obtained. Gene analysis of the BFB40 mutant indicated that the mutant enzyme had K278 M and E303 V mutations. To compare the enzyme characteristics with the wild-type enzyme, the mutant enzyme, BFB40, was purified from the Escherichia coli (E. coli) transformant. Both the thermostability and apparent optimum temperature of the BFB40 were shifted upward by 5 °C compared with those of the wild-type enzyme. The apparent Km value for -phenylalaninamide of BFB40 enzyme was almost the same with that of the wild-type enzyme, whereas Vmax value was enhanced about three-fold. Almost complete hydrolysis of -phenylalaninamide was achieved in 2 h from 1.0 M of racemic phenylalaninamide–HCl using the cells of E. coli transformant expressing BFB40 enzyme, the conversion of which was 1.7-fold higher than the case using cells expressing wild-type enzyme after the same reaction time.  相似文献   

19.
Arabidopsis thaliana contains two photosynthetically competent chloroplast‐targeted ferredoxin‐NADP+ oxidoreductase (FNR) isoforms that are largely redundant in their function. Nevertheless, the FNR isoforms also display distinct molecular phenotypes, as only the FNR1 is able to directly bind to the thylakoid membrane. We report the consequences of depletion of FNR in the F1 (fnr1 × fnr2) and F2 (fnr1 fnr2) generation plants of the fnr1 and fnr2 single mutant crossings. The fnr1 × fnr2 plants, with a decreased total content of FNR, showed a small and pale green phenotype, accompanied with a marked downregulation of photosynthetic pigment‐protein complexes. Specifically, when compared with the wild type (WT), the quantum yield of photosystem II (PSII) electron transport was lower, non‐photochemical quenching (NPQ) was higher and the rate of P700+ re‐reduction was faster in the mutant plants. The slight over‐reduction of the plastoquinone pool detected in the mutants resulted in the adjustment of the reactive oxygen species (ROS) scavenging systems, as both the content and de‐epoxidation state of xanthophylls, as well as the content of α‐tocopherol, were higher in the leaves of the mutant plants when compared with the WT. The fnr1 fnr2 double mutant plants, which had no detectable FNR and possessed an extremely downregulated photosynthetic machinery, survived only when grown heterotrophically in the presence of sucrose. Intriguingly, the fnr1 fnr2 plants were still capable of sustaining the biogenesis of a few malformed chloroplasts.  相似文献   

20.
Rubisco activase (RCA) is an important enzyme that can catalyze the carboxylation and oxygenation activities of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco), which is involved in the photosynthetic carbon reduction cycle. Here, we studied the effects of changes in RCA activity on photosynthesis, growth and development, as well as the low temperature and weak light tolerance of RCA overexpressing transgenic cucumber (Cucumis sativus) plants. CsRCA overexpression increased the plant height, leaf area and dry matter, and decreased the root/top ratio in transgenic cucumber plants compared with the wild‐type (WT) plants. Low temperature and low light stress led to decreases in the CsRCA expression and protein levels, the photosynthetic rate (Pn) and the stomatal conductance (Gs), but an increase in the intercellular CO2 (Ci) concentration in cucumber leaves. The actual photochemical efficiency and maximal photochemical efficiency of photosystem II in cucumber seedlings also declined, but the initial fluorescence increased during low temperature and weak light stress. Transgenic plants showed a lower decrease in the CsRCA expression level and actual and maximal photochemical efficiencies, as well as increases in the Ci and initial fluorescence relative to the WT plants. Low temperature and low light stress resulted in a significant increase in the malondialdehyde (MDA) content; however, this increase was reduced in transgenic plants compared with that in WT plants. Thus, the overexpression of CsRCA may promote the growth and low temperature and low light tolerance of cucumber plants in solar greenhouses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号