首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Adult stem cells are responsible for maintaining the balance between cell proliferation and differentiation within self-renewing tissues. The molecular and cellular mechanisms mediating such balance are poorly understood. The production of reactive oxygen species (ROS) has emerged as an important mediator of stem cell homeostasis in various systems. Our recent work demonstrates that Rac1-dependent ROS production mediates intestinal stem cell (ISC) proliferation in mouse models of colorectal cancer (CRC). Here, we use the adult Drosophila midgut and the mouse small intestine to directly address the role of Rac1 in ISC proliferation and tissue regeneration in response to damage. Our results demonstrate that Rac1 is necessary and sufficient to drive ISC proliferation and regeneration in an ROS-dependent manner. Our data point to an evolutionarily conserved role of Rac1 in intestinal homeostasis and highlight the value of combining work in the mammalian and Drosophila intestine as paradigms to study stem cell biology.  相似文献   

2.
The ability to regenerate following stress is a hallmark of self-renewing tissues. However, little is known about how regeneration differs from homeostatic tissue maintenance. Here, we study the role and regulation of Wingless (Wg)/Wnt signalling during intestinal regeneration using the Drosophila adult midgut. We show that Wg is produced by the intestinal epithelial compartment upon damage or stress and it is exclusively required for intestinal stem cell (ISC) proliferation during tissue regeneration. Reducing Wg or downstream signalling components from the intestinal epithelium blocked tissue regeneration. Importantly, we demonstrate that Wg from the undifferentiated progenitor cell, the enteroblast, is required for Myc-dependent ISC proliferation during regeneration. Similar to young regenerating tissues, ageing intestines required Wg and Myc for ISC hyperproliferation. Unexpectedly, our results demonstrate that epithelial but not mesenchymal Wg is essential for ISC proliferation in response to damage, while neither source of the ligand is solely responsible for ISC maintenance and tissue self-renewal in unchallenged tissues. Therefore, fine-tuning Wnt results in optimal balance between the ability to respond to stress without negatively affecting organismal viability.  相似文献   

3.
4.
Src family kinases (SFKs) have long been implicated in tumorigenesis, but the exact requirement for individual kinase members, and their specific spatially and temporally defined roles in the maintenance of epithelial homeostasis remained unclear. A study by Cordero et al ( 2014 ) now combines the strengths of Drosophila and mouse models for intestinal epithelial regeneration to characterize the role of individual SFKs in epithelial stem cells, tissue regeneration, and tumorigenesis.  相似文献   

5.
Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thereby maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration after enteric infection by the bacterium Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis.  相似文献   

6.
Aiguo Tian 《Fly》2017,11(4):297-302
Many adult organs including Drosophila adult midguts rely on resident stem cells to replenish damaged cells during tissue homeostasis and regeneration. Previous studies have shown that, upon injury, intestinal stem cells (ISCs) in the midguts can increase proliferation and lineage differentiation to meet the demand for tissue repair. Our recent study has demonstrated that, in response to certain injury, midguts can expand ISC population size as an additional regenerative mechanism. We found that injury elicited by bleomycin feeding or bacterial infection increased the production of two BMP ligands (Dpp and Gbb) in enterocytes (ECs), leading to elevated BMP signaling in progenitor cells that drove an expansion of ISCs by promoting their symmetric self-renewing division. Interestingly, we also found that BMP signaling in ECs inhibits the production of Dpp and Gbb, and that this negative feedback mechanism is required to reset ISC pool size to the homeostatic state. Our findings suggest that BMP signaling exerts two opposing influences on stem cell activity depending on where it acts: BMP signaling in progenitor cells promotes ISC self-renewal while BMP signaling in ECs restricts ISC self-renewal by preventing excessive production of BMP ligands. Our results further suggest that transient expansion of ISC population in conjunction with increasing ISC proliferation provides a more effective strategy for tissue regeneration.  相似文献   

7.
Tissue homeostasis is controlled by the differentiated progeny of residential progenitors (stem cells). Adult stem cells constantly adjust their proliferation/differentiation rates to respond to tissue damage and stresses. However, how differentiated cells maintain tissue homeostasis remains unclear. Here, we find that heparan sulfate (HS), a class of glycosaminoglycan (GAG) chains, protects differentiated cells from loss to maintain intestinal homeostasis. HS depletion in enterocytes (ECs) leads to intestinal homeostasis disruption, with accumulation of intestinal stem cell (ISC)‐like cells and mis‐differentiated progeny. HS‐deficient ECs are prone to cell death/stress and induced cytokine and epidermal growth factor (EGF) expression, which, in turn, promote ISC proliferation and differentiation. Interestingly, HS depletion in ECs results in the inactivation of decapentaplegic (Dpp) signaling. Moreover, ectopic Dpp signaling completely rescued the defects caused by HS depletion. Together, our data demonstrate that HS is required for Dpp signal activation in ECs, thereby protecting ECs from ablation to maintain midgut homeostasis. Our data shed light into the regulatory mechanisms of how differentiated cells contribute to tissue homeostasis maintenance.  相似文献   

8.
9.
10.
Xu N  Wang SQ  Tan D  Gao Y  Lin G  Xi R 《Developmental biology》2011,354(1):2780-43
Tissue-specific adult stem cells are commonly associated with local niche for their maintenance and function. In the adult Drosophila midgut, the surrounding visceral muscle maintains intestinal stem cells (ISCs) by stimulating Wingless (Wg) and JAK/STAT pathway activities, whereas cytokine production in mature enterocytes also induces ISC division and epithelial regeneration, especially in response to stress. Here we show that EGFR/Ras/ERK signaling is another important participant in promoting ISC maintenance and division in healthy intestine. The EGFR ligand Vein is specifically expressed in muscle cells and is important for ISC maintenance and proliferation. Two additional EGFR ligands, Spitz and Keren, function redundantly as possible autocrine signals to promote ISC maintenance and proliferation. Notably, over-activated EGFR signaling could partially replace Wg or JAK/STAT signaling for ISC maintenance and division, and vice versa. Moreover, although disrupting any single one of the three signaling pathways shows mild and progressive ISC loss over time, simultaneous disruption of them all leads to rapid and complete ISC elimination. Taken together, our data suggest that Drosophila midgut ISCs are maintained cooperatively by multiple signaling pathway activities and reinforce the notion that visceral muscle is a critical component of the ISC niche.  相似文献   

11.
12.
BackgroudExposure to high-dose radiation, such as after a nuclear accident or radiotherapy, elicits severe intestinal damage and is associated with a high mortality rate. In treating patients exhibiting radiation-induced intestinal dysfunction, countermeasures to radiation are required. In principle, the cellular event underlying radiation-induced gastrointestinal syndrome is intestinal stem cell (ISC) apoptosis in the crypts. High-dose irradiation induces the loss of ISCs and impairs intestinal barrier function, including epithelial regeneration and integrity. Notch signaling plays a critical role in the maintenance of the intestinal epithelium and regulates ISC self-renewal. Ghrelin, a hormone produced mainly by enteroendocrine cells in the gastrointestinal tract, has diverse physiological and biological functions.PurposeWe investigate whether ghrelin mitigates radiation-induced enteropathy, focusing on its role in maintaining epithelial function.MethodsTo investigate the effect of ghrelin in radiation-induced epithelial damage, we analyzed proliferation and Notch signaling in human intestinal epithelial cell. And we performed histological analysis, inflammatory response, barrier functional assays, and expression of notch related gene and epithelial stem cell using a mouse model of radiation-induced enteritis.ResultsIn this study, we found that ghrelin treatment accelerated the reversal of radiation-induced epithelial damage including barrier dysfunction and defective self-renewing property of ISCs by activating Notch signaling. Exogenous injection of ghrelin also attenuated the severity of radiation-induced intestinal injury in a mouse model.ConclusionThese data suggest that ghrelin may be used as a potential therapeutic agent for radiation-induced enteropathy.  相似文献   

13.
ObjectivesAdult stem cells uphold a delicate balance between quiescent and active states, which is crucial for tissue homeostasis. Whereas many signalling pathways that regulate epithelial stem cells have been reported, many regulators remain unidentified.Materials and MethodsFlies were used to generate tissue‐specific gene knockdown and gene knockout. qRT‐PCR was used to assess the relative mRNA levels. Immunofluorescence was used to determine protein localization and expression patterns. Clonal analyses were used to observe the phenotype. RNA‐seq was used to screen downstream mechanisms.ResultsHere, we report a member of the chloride channel family, ClCc, which is specifically expressed in Drosophila intestinal stem/progenitor cells and regulates intestinal stem cell (ISC) proliferation under physiological conditions and upon tissue damage. Mechanistically, we found that the ISC loss induced by the depletion of ClCc in intestinal stem/progenitor cells is due to inhibition of the EGFR signalling pathway.ConclusionOur findings reveal an ISC‐specific function of ClCc in regulating stem cell maintenance and proliferation, thereby providing new insights into the functional links among the chloride channel family, ISC proliferation and tissue homeostasis.  相似文献   

14.
Snail family members regulate epithelial‐to‐mesenchymal transition (EMT) during invasion of intestinal tumours, but their role in normal intestinal homeostasis is unknown. Studies in breast and skin epithelia indicate that Snail proteins promote an undifferentiated state. Here, we demonstrate that conditional knockout of Snai1 in the intestinal epithelium results in apoptotic loss of crypt base columnar stem cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snai1 conditional knockout mice also undergo apoptosis when Snai1 is deleted. Conversely, ectopic expression of Snai1 in the intestinal epithelium in vivo results in the expansion of the crypt base columnar cell pool and a decrease in secretory enteroendocrine and Paneth cells. Following conditional deletion of Snai1, the intestinal epithelium fails to produce a proliferative response following radiation‐induced damage indicating a fundamental requirement for Snai1 in epithelial regeneration. These results demonstrate that Snai1 is required for regulation of lineage choice, maintenance of CBC stem cells and regeneration of the intestinal epithelium following damage.  相似文献   

15.
The homeostasis of Drosophila midgut is maintained by multipotent intestinal stem cells (ISCs), each of which gives rise to a new ISC and an immature daughter cell, enteroblast (EB), after one asymmetric cell division. In Drosophila, the Gal4‐UAS system is widely used to manipulate gene expression in a tissue‐ or cell‐specific manner, but in Drosophila midgut, there are no ISC‐ or EB‐specific Gal4 lines available. Here we report the generation and characterization of Dl‐Gal4 and Su(H)GBE‐Gal4 lines, which are expressed specifically in the ISCs and EBs separately. Additionally, we demonstrate that Dl‐Gal4 and Su(H)GBE‐Gal4 are expressed in adult midgut progenitors (AMPs) and niche peripheral cells (PCs) separately in larval midgut. These two Gal4 lines will serve as invaluable tools for navigating ISC behaviors. genesis 48:607–611, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

16.
The Src family kinases (SFK) are a group of signalling molecules with important regulatory functions in inflammation and haemostasis. Leucocytes and platelets express multiple isoforms of the SFKs. Previous studies used broad‐spectrum pharmacological inhibitors, or murine models deficient in multiple SFK isoforms, to demonstrate the functional consequences of deficiencies in SFK signalling. Here, we hypothesized that individual SFK operate in a non‐redundant fashion in the thrombo‐inflammatory recruitment of monocyte during atherosclerosis. Using in vitro adhesion assays and single SFK knockout mice crossed with the ApoE?/? model of atherosclerosis, we find that SFK signalling regulates platelet‐dependent recruitment of monocytes. However, loss of a single SFK, Fgr or Lyn, reduced platelet‐mediated monocyte recruitment in vitro. This translated into a significant reduction in the burden of atherosclerotic disease in Fgr?/?/ApoE?/? or Lyn?/?/ApoE?/? animals. SFK signalling is not redundant in thrombo‐inflammatory vascular disease and individual SFK may represent targets for therapeutic intervention.  相似文献   

17.
18.
19.
Adult stem cells are the most primitive cells of a lineage and are distinguished by the properties of self-renewal and multipotency. Coordinated control of stem cell proliferation and multilineage differentiation is essential to ensure a steady output of differentiated daughter cells necessary to maintain tissue homeostasis. However, little is known about the signals that coordinate stem cell proliferation and daughter cell differentiation. Here we investigate the role of the conserved JAK/STAT signaling pathway in the Drosophila intestinal stem cell (ISC) lineage. We show first, that JAK/STAT signaling is normally active in both ISCs and their newly formed daughters, but not in terminally differentiated enteroendocrine (ee) cells or enterocyte (EC) cells. Second, analysis of ISC lineages shows that JAK/STAT signaling is necessary but not sufficient for daughter cell differentiation, indicating that competence to undergo multilineage differentiation depends upon JAK/STAT. Finally, our analysis reveals JAK/STAT signaling to be a potent regulator of ISC proliferation, but not ISC self-renewal. On the basis of these findings, we suggest a model in which JAK/STAT signaling coordinates the processes of stem cell proliferation with the competence of daughter cells to undergo multilineage differentiation, ensuring a robust cellular output in the lineage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号