首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The replication fork barrier site (RFB) is an approximately 100-bp DNA sequence located near the 3' end of the rRNA genes in the yeast Saccharomyces cerevisiae. The gene FOB1 is required for this RFB activity. FOB1 is also necessary for recombination in the ribosomal DNA (rDNA), including increase and decrease of rDNA repeat copy number, production of extrachromosomal rDNA circles, and possibly homogenization of the repeats. Despite the central role that Foblp plays in both replication fork blocking and rDNA recombination, the molecular mechanism by which Fob1p mediates these activities has not been determined. Here, I show by using chromatin immunoprecipitation, gel shift, footprinting, and atomic force microscopy assays that Fob1p directly binds to the RFB. Fob1p binds to two separated sequences in the RFB. A predicted zinc finger motif in Fob1p was shown to be essential for the RFB binding, replication fork blocking, and rDNA recombination activities. The RFB seems to wrap around Fob1p, and this wrapping structure may be important for function in the rDNA repeats.  相似文献   

3.
Weitao T  Budd M  Campbell JL 《Mutation research》2003,532(1-2):157-172
We and others have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We showed previously that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB. Both pausing and breakage are elevated in the hypomorphic dna2-2 helicase mutant. Deletion of FOB1 suppresses the elevated pausing and DSB formation. Our current work shows that mutation inactivating Sgs1, the yeast RecQ helicase ortholog, also causes accumulation of stalled replication forks and DSBs at the rDNA RFB. Either deletion of FOB1, which suppresses fork blocking and certain types of rDNA recombination, or an increase in SIR2 gene dosage, which suppresses rDNA recombination, reduces the number of forks persisting at the RFB. Although dna2-2 sgs1Delta double mutants are conditionally lethal, they do not show enhanced rDNA defects compared to sgs1Delta alone. However, surprisingly, the dna2-2 sgs1Delta lethality is suppressed by deletion of FOB1. On the other hand, the dna2-2 sgs1Delta lethality is only partially suppressed by deletion of rad51Delta. We propose that the replication-associated defects that we document in the rDNA are characteristic of similar events occurring either stochastically throughout the genome or at other regions where replication forks move slowly or stall, such as telomeres, centromeres, or replication slow zones.  相似文献   

4.
5.
A cause of aging in yeast is the accumulation of circular species of ribosomal DNA (rDNA) arising from the 100-200 tandemly repeated copies in the genome. We show here that mutation of the FOB1 gene slows the generation of these circles and thus extends life span. Fob1p is known to create a unidirectional block to replication forks in the rDNA. We show that Fob1p is a nucleolar protein, suggesting a direct involvement in the replication fork block. We propose that this block can trigger aging by causing chromosomal breaks, the repair of which results in the generation of rDNA circles. These findings may provide a novel link between metabolic rate and aging in yeast and, perhaps, higher organisms.  相似文献   

6.
An average of 200 copies of the rRNA gene (rDNA) is clustered in a long tandem array in Saccharomyces cerevisiae. FOB1 is known to be required for expansion/contraction of the repeats by stimulating recombination, thereby contributing to the maintenance of the average copy number. In Deltafob1 cells, the repeats are still maintained without any fluctuation in the copy number, suggesting that another, unknown system acts to prevent repeat contraction. Here, we show that condensin acts together with FOB1 in a functionally complemented fashion to maintain the long tandem repeats. Six condensin mutants possessing severely contracted rDNA repeats were isolated in Deltafob1 cells but not in FOB1+ cells. We also found that the condensin complex associated with the nontranscribed spacer region of rDNA with a major peak coincided with the replication fork barrier (RFB) site in a FOB1-dependent fashion. Surprisingly, condensin association with the RFB site was established during S phase and was maintained until anaphase. These results indicate that FOB1 plays a novel role in preventing repeat contraction by regulating condensin association and suggest a link between replication termination and chromosome condensation and segregation.  相似文献   

7.
Saccharomyces cerevisiae carries approximately 150 ribosomal DNA (rDNA) copies in tandem repeats. Each repeat consists of the 35S rRNA gene, the NTS1 spacer, the 5S rRNA gene, and the NTS2 spacer. The FOB1 gene was previously shown to be required for replication fork block (RFB) activity at the RFB site in NTS1, for recombination hot spot (HOT1) activity, and for rDNA repeat expansion and contraction. We have constructed a strain in which the majority of rDNA repeats are deleted, leaving two copies of rDNA covering the 5S-NTS2-35S region and a single intact NTS1, and whose growth is supported by a helper plasmid carrying, in addition to the 5S rRNA gene, the 35S rRNA coding region fused to the GAL7 promoter. This strain carries a fob1 mutation, and an extensive expansion of chromosomal rDNA repeats was demonstrated by introducing the missing FOB1 gene by transformation. Mutational analysis using this system showed that not only the RFB site but also the adjacent approximately 400-bp region in NTS1 (together called the EXP region) are required for the FOB1-dependent repeat expansion. This approximately 400-bp DNA element is not required for the RFB activity or the HOT1 activity and therefore defines a function unique to rDNA repeat expansion (and presumably contraction) separate from HOT1 and RFB activities.  相似文献   

8.
9.
10.
Kobayashi T  Horiuchi T  Tongaonkar P  Vu L  Nomura M 《Cell》2004,117(4):441-453
It is known that mutations in gene SIR2 increase and those in FOB1 decrease recombination within rDNA repeats as assayed by marker loss or extrachromosomal rDNA circle formation. SIR2-dependent chromatin structures have been thought to inhibit access and/or function of recombination machinery in rDNA. We measured the frequency of FOB1-dependent arrest of replication forks, consequent DNA double-strand breaks, and formation of DNA molecules with Holliday junction structures, and found no significant difference between sir2Delta and SIR2 strains. Formal genetic experiments measuring mitotic recombination rates within individual rRNA genes also showed no significant difference between these two strains. Instead, we found a significant decrease in the association of cohesin subunit Mcd1p (Scc1p) to rDNA in sir2Delta relative to SIR2 strains. From these and other experiments, we conclude that SIR2 prevents unequal sister-chromatid recombination, probably by forming special cohesin structures, without significant effects on recombinational events within individual rRNA genes.  相似文献   

11.
We have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae and contributes to the shortened lifespan of dna2 mutants. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We show directly that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB. Both pausing and breakage are elevated in the early aging, hypomorphic dna2-2 helicase mutant. Deletion of FOB1, encoding the fork barrier protein, suppresses the elevated pausing and DSB formation, and represses initiation at rDNA ARSs. The dna2-2 mutation is synthetically lethal with deltarrm3, encoding another DNA helicase involved in rDNA replication. It does not appear to be the case that the rDNA is the only determinant of genome stability during the yeast lifespan however since strains carrying deletion of all chromosomal rDNA but with all rDNA supplied on a plasmid, have decreased rather than increased lifespan. We conclude that the replication-associated defects that we can measure in the rDNA are symbolic of similar events occurring either stochastically throughout the genome or at other regions where replication forks move slowly or stall, such as telomeres, centromeres, or replication slow zones.  相似文献   

12.
Calorie restriction (CR) extends lifespan in yeast, worms, flies and mammals, suggesting that it acts via a conserved mechanism. In yeast, activation of the NAD‐dependent histone deacetylase, Sir2, by CR is thought to increase silencing at the ribosomal DNA, thereby reducing the recombination‐induced generation of extrachromosomal rDNA circles, hence increasing replicative lifespan. Although accumulation of extrachromosomal rDNA circles is specific to yeast aging, it is thought that Sirtuin activation represents a conserved longevity mechanism through which the beneficial effects of CR are mediated in various species. We show here that growing yeast on 0.05 or 0.5% glucose (severe and moderate CR, respectively) does not increase silencing at either sub‐telomeric or rDNA loci compared with standard (2% glucose) media. Furthermore, rDNA silencing was unaffected in the hxk2Δ, sch9Δ and tor1Δ genetic mimics of CR, but inhibited by FOB1 deletion. All these interventions extend lifespan in multiple yeast backgrounds, revealing a poor correlation between rDNA silencing and longevity. In contrast, CR and deletion of the FOB1, HXK2, SCH9 and TOR1 genes, all significantly reduced rDNA recombination. This silencing‐independent mechanism for suppressing rDNA recombination may therefore contribute to CR‐mediated lifespan extension.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号