首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Cell metabolism》2022,34(12):1960-1976.e9
  1. Download : Download high-res image (208KB)
  2. Download : Download full-size image
  相似文献   

4.
Ovarian cancer is the deadliest gynecological malignancy due to its symptomless early stage, metastasis, and high recurrence rate. The tumor microenvironment contributes to the ovarian cancer progression, metastasis, and chemoresistance. Adipose-derived stem cell in the tumor microenvironment of ovarian cancer, as a key player, interacts with ovarian cancer cells to form the cancer-associated fibroblasts and cancer-associated adipocytes, and secretes soluble factors to activate tumor cell signaling, which can promote ovarian cancer metastasis and chemoresistance. We summarize in this review the recent progress in the studies of interactions between adipose-derived stem cell and ovarian cancer, thus, to provide some insight for ovarian cancer therapy through targeting adipose-derived stem cell.  相似文献   

5.
Many studies have shown that there were similarity between tumorigenesis and gametogenesis. Our previous work found that cancer‐testis (CT) genes could serve as a novel source of candidate of cancer. Here, by analysing The Cancer Genome Atlas (TCGA) database, we characterized a CT gene, SPANXC, which is expressed only in testis. The SPANXC was reactivated in lung adenocarcinoma (LUAD) tissues. And the expression of SPANXC was associated with prognosis of LUAD. We also found that the activation of SPANXC was due to the promoter hypomethylation of SPANXC. Moreover, SPANXC could modulate cell metastasis both in vitro and in vivo. Mechanistically, we found that SPANXC could bind to ROCK1, a metastasis‐related gene, and thus SPANXC may regulate cell metastasis partly through interaction with ROCK1 in LUAD. Together, our results demonstrated that the CT expression pattern of SPANXC served as a crucial role in metastasis of LUAD. And these data further corroborated the resemblance between processes of germ cell development and tumorigenesis, including migration and invasion.  相似文献   

6.
CD44与肿瘤转移   总被引:12,自引:0,他引:12  
郭立霞  谢弘 《生命科学》2001,13(2):60-63
透明质酸受体CD44是一类重要的粘附分子,与肿瘤转移密切相关,。早期认为CD44可促进肿瘤细胞的转移,但近来发现CD44与肿瘤志移之间的关系十分复杂,与CD44的分子类型及肿瘤组织类型皆有关。因此,尚需深入了解CD44在肿瘤转移过程中的分子机制,目前的研究发现CD44可能影响了肿瘤细胞的粘附,运动和胞外基质的降解等过程,临床上CD44有可能成为新的诊断指标和治疗靶点。  相似文献   

7.
The isolation and characterization of lung stem and progenitor cells represent an important step towards the understanding of lung repair after injury, lung disease pathogenesis and the identification of the target cells of transformation in lung carcinogenesis. Different approaches using prospective isolation of progenitor cells by flow cytometry or lineage-tracing experiments in mouse models of lung injury have led to the identification of distinct progenitor subpopulations in different morphological regions of the adult lung. Genetically defined mouse models of lung cancer are offering new perspectives on the cells of origin of different subtypes of lung cancer. These mouse models pave the way to further investigate human lung progenitor cells at the origin of lung cancers, as well as to define the nature of the lung cancer stem cells. It will be critical to establish the link between oncogenic driver mutations recently discovered in lung cancers, target cells of transformation and subtypes of lung cancers to enable better stratification of patients for improved therapeutic strategies.  相似文献   

8.
CD147是一种在多种组织细胞膜表面表达的跨膜糖蛋白,通过诱导基质金属蛋白酶(matrix metalloproteinase,M M P)产生,强化胶原蛋白酶水解作用,且可以与整联蛋白(integrin)α3β1和α6β1形成复合体,促进基底膜的降解和肿瘤细胞的移出。另外CD147的过表达促进肿瘤血管内皮生长因子(vascular endothelial growth factor,VEGF)的大量产生,加速肿瘤血管的生成和生长。现在就C D147在肿瘤浸润转移等方面的研究进展作一综述。  相似文献   

9.
《Cell metabolism》2022,34(11):1675-1699
  1. Download : Download high-res image (96KB)
  2. Download : Download full-size image
  相似文献   

10.
Olfactomedin 4 (OLFM4) is highly expressed in gastrointestinal cancers and has an anti-apoptotic function. The roles of OLFM4 in tumor growth and metastasis and how it functions in these processes remain elusive. We investigated the function of OLFM4 in tumor growth and metastasis using B16F10 mouse melanoma cells as an experimental system. Our results showed that OLFM4 had no positive effect on cell viability or cell cycle progression in B16F10 cells. However, it significantly suppressed the tumorigenicity of B16F10 cells, i.e., intradermal primary tumor growth and lung metastasis. OLFM4 also suppressed the migration and invasion of B16F10 cells in vitro. For further insight into the mechanisms underlying OLFM4-mediated suppression of tumor progression, we examined the effect of OLFM4 on the expression of integrin and matrix metalloproteinase (MMP), both of which are involved in tumor progression. Overexpression of OLFM4 clearly reduced the expression levels of integrin α1, integrin α4, integrin α5, integrin α6, and MMP9. Moreover, forced expression of MMP9 attenuated the inhibitory activity of OLFM4 on migration and invasiveness. Our findings provide the experimental evidence that OLFM4 may function as a tumor suppressor and an anti-metastatic gene during tumor progression.  相似文献   

11.
Lung cancer is a clinically difficult disease with rising disease burden around the world. Unfortunately, most lung cancers present at a clinically advanced stage. Of these cancers, many also present with brain metastasis which complicates the clinical picture. This review summarizes current knowledge on the molecular basis of lung cancer brain metastases. We start from the clinical perspective, aiming to provide a clinical context for a significant problem that requires much deeper scientific investigation. We review new research governing the metastatic process, including tumor cell signaling, establishment of a receptive tumor niches in the brain and evaluate potential new therapeutic options that take advantage of these new scientific advances.Lung cancer remains the largest single cause of cancer mortality in the United States (Siegel et al., 2015). This continues to be the clinical picture despite significant advances in therapy, including the advent of targeted molecular therapies and newly adopted immunotherapies for certain subtypes of lung cancer. In the vast majority of cases, lung cancer presents as advanced disease; in many instances, this advanced disease state is intimately associated with micro and macrometastatic disease (Goldberg et al., 2015). For both non-small cell lung cancer and small cell lung cancer patients, the predominant metastatic site is the brain, with up to 68% of patients with mediastinal lymph node metastasis eventually demonstrating brain metastasis (Wang et al., 2009).The frequency (incidence) of brain metastasis is highest in lung cancers, relative to other common epithelial malignancies (Schouten et al., 2002). Other studies have attempted to predict the risk of brain metastasis in the setting of previously non-metastatic disease. One of the largest studies to do this, analyzing historical data from 1973 to 2011 using the SEER database revealed a 9% risk of patients with previously non-metastatic NSCLC developing brain metastasis over the course of their disease, while 18% of small cell lung cancer patients without previous metastasis went on to develop brain metastasis as their disease progressed (Goncalves et al., 2016).The reasons underlying this predilection for the central nervous system, as well as the recent increase in the frequency of brain metastasis identified in patients remain important questions for both clinicians and basic scientists. More than ever, the question of how brain metastasis develop and how they can be treated and managed requires the involvement of interdisciplinary teams—and more importantly—scientists who are capable of thinking like clinicians and clinicians who are capable of thinking like scientists. This review aims to present a translational perspective on brain metastasis. We will investigate the scope of the problem of brain metastasis and the current management of the metastatic disease process in lung cancer. From this clinical starting point, we will investigate the literature surrounding the molecular underpinnings of lung tumor metastasis and seek to understand the process from a biological perspective to generate new hypotheses.  相似文献   

12.
Long non‐coding RNAs (lncRNAs) have been validated to play important role in multiple cancers, including non‐small cell lung cancer (NSCLC). In present study, our team investigate the biologic role of SNHG15 in the NSCLC tumorigenesis. LncRNA SNHG15 was significantly upregulated in NSCLC tissue samples and cells, and its overexpression was associated with poor prognosis of NSCLC patients. In vitro, loss‐of‐functional cellular experiments showed that SNHG15 silencing significantly inhibited the proliferation, promoted the apoptosis, and induced the cycle arrest at G0//G1 phase. In vivo, xenograft assay showed that SNHG15 silencing suppressed tumor growth of NSCLC cells. Besides, SNHG15 silencing decreased CDK14 protein expression both in vivo and vitro. Bioinformatics tools and luciferase reporter assay confirmed that miR‐486 both targeted the 3′‐UTR of SNHG15 and CDK14 and was negatively correlated with their expression levels. In summary, our study conclude that the ectopic overexpression of SNHG15 contribute to the NSCLC tumorigenesis by regulating CDK14 protein via sponging miR‐486, providing a novel insight for NSCLC pathogenesis and potential therapeutic strategy for NSCLC patients.  相似文献   

13.
The role of caveolin‐1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E‐cadherin in CAV1‐dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E‐cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co‐expression of E‐cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav‐1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E‐cadherin expression in B16F10 (E‐cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co‐expression of CAV1 and E‐cadherin in B16F10 (cav‐1/E‐cad) cells abolishes tumor formation, lung metastasis, increased Rac‐1 activity, and cell migration observed with B16F10 (cav‐1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac‐1 activation in these cells.  相似文献   

14.
15.
16.
We have developed a new in vivo mouse model to image single cancer‐cell dynamics of metastasis to the lung in real‐time. Regulating airflow volume with a novel endotracheal intubation method enabled controlling lung expansion adequate for imaging of the exposed lung surface. Cancer cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm were injected in the tail vein of the mouse. The right chest wall was then opened in order to image metastases on the lung surface directly. After each observation, the chest wall was sutured and the air was suctioned in order to re‐inflate the lung, in order to keep the mice alive. Observations have been carried out for up to 8 h per session and repeated up to six times per mouse thus far. The seeding and arresting of single cancer cells on the lung, accumulation of cancer‐cell emboli, cancer‐cell viability, and metastatic colony formation were imaged in real‐time. This new technology makes it possible to observe real‐time monitoring of cancer‐cell dynamics of metastasis in the lung and to identify potential metastatic stem cells. J. Cell. Biochem. 109: 58–64, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
随着肿瘤治疗水平的提高,肿瘤患者的生存期显著延长,转移性骨肿瘤的发生率呈增长趋势.骨转移引起的剧烈的临床症状和其较长的潜伏期,以及缺乏有效的治疗方法,极大降低了患者的生活质量.本文主要综述了骨转移相关的细胞特征及骨微环境在骨转移中的作用,并分析了影响骨转移形成的相关分子因素,为骨转移的定向分子治疗提供进一步的理论依据.  相似文献   

19.
Lung cancer is one of the major cause for high-death rate all over the world, due to increased metastasize and difficulties in diagnosis. Naringenin is naturally occurring flavonoid found in various fruits including tomatoes, citrus fruit and figs. Naringenin is known to have several therapeutic effects including anti-atherogenic, antimicrobial, anti-inflammatory, hepatoprotective, anticancer and anti-mutagenic. The present study was aimed to analyse the naringenin induced anti-proliferative and apoptosis effects in human lung cancer cells. Cells were treated with various concentrations of naringenin (10, 100 & 200 µmol/L) for 48 hours. Cisplatin (20 µg/mL) was used as positive control. Cell viability, apoptosis, migration and mRNA, and protein expression of caspase-3, matrixmetallo proteinases-2 (MMP-2) and MMP-9 were determined. The cell viability was 93.7 ± 7.5, 51.4 ± 4.4 and 32.1 ± 2.1 at 10, 100 and 200 µmol/L of naringenin respectively. Naringenin significantly increased apoptotic cells. The 100 and 200 µmol/L of naringenin significantly suppressed the larger wounds of cultured human cancer cells compared with the untreated lung cancer cells. Naringenin increased d the expression of caspase-3 and reduced the expression of MMP-2 and MMP-9. Taking all these data together, it is suggested that the naringenin was effective against human lung cancer proliferation, migration and metastasis.  相似文献   

20.
Despite recent breakthroughs in targeted‐ and immune‐based therapies, rapid development of drug resistance remains a hurdle for the long‐term treatment of patients with melanoma. Targeting metastatically spreading circulating tumor cells (CTCs) may provide an additional approach to manage melanoma. This study investigates whether targeting cholesterol transport in melanoma CTCs can retard metastasis development. Nanolipolee‐007, the liposomal form of leelamine, reduced melanoma metastasis in both a novel in vitro flow system mimicking the circulating system and in experimental as well as spontaneous animal metastasis models, irrespective of the BRAF mutational status of the CTCs. Leelamine led to cholesterol trapping in lysosomes, which subsequently shut down receptor‐mediated endocytosis, endosome trafficking, and inhibited the major oncogenic signaling cascades important for survival such as the AKT pathway. As pAKT is important in CTC survival, inhibition by targeting cholesterol metabolism led to apoptosis, suggesting this approach might be particularly effective for those CTCs having high levels of pAKT to aid survival in the circulation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号