首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Autophagy》2013,9(5):840-841
The various pathologies in ataxia telangiectasia (A-T) patients including T-cell lymphomagenesis have been attributed to defects in the DNA damage response pathway because ATM, the gene mutated in this disease, is a key mediator of this process. Analysis of Atm-deficient thymocytes in mice reveals that the absence of this gene results in altered mitochondrial homeostasis, a phenomenon that appears to result from abnormal mitophagy engagement. Interestingly, allelic loss of the autophagic gene Becn1 delays tumorigenesis in Atm-null mice presumably by reversing the mitochondrial abnormalities and not by improving the DNA damage response (DDR) pathway. Thus, ATM plays a critical role in modulating mitochondrial homeostasis perhaps by regulating mitophagy.  相似文献   

2.
Mitochondria are cellular organelles that are involved in various metabolic processes, and damage to mitochondria can affect cell health and even lead to disease. Mitophagy is a mechanism by which cells selectively wrap and degrade damaged mitochondria to maintain cell homeostasis. However, studies have not focused on whether mitophagy is involved in the occurrence of Staphylococcus aureus (S. aureus)-induced mastitis in dairy cows. Here, we found that S. aureus infection of bovine macrophages leads to oxidative damage and mitochondria damage. The expression of LC3, PINK1 and Parkin was significantly increased after intracellular infection. We observed changes in the morphology of mitochondria and the emergence of mitochondrial autolysosomes in bovine macrophages by transmission electron microscopy and found that enhanced mitophagy promoted bacterial proliferation in the cell. In conclusion, this study demonstrates that S. aureus infection of bovine macrophages induces mitophagy through the PINK1/Parkin pathway, and this mechanism is used by the bacteria to avoid macrophage-induced death. These findings provide new ideas and references for the prevention and treatment of S. aureus infection.  相似文献   

3.
Gian-Luca McLelland 《Autophagy》2018,14(9):1658-1660
Mitochondrial damage triggers mitochondrial quality control pathways, which act to ensure the health of the mitochondrial network. The turnover of damaged mitochondria by mitophagy is initiated by the Parkinson disease-linked genes PRKN and PINK1, and we recently investigated the role that interorganellar contact sites between the endoplasmic reticulum (ER) and the outer mitochondrial membrane (OMM) play in this pathway. In this punctum, we summarize our findings that show that the ER-OMM tether MFN2 acts as a suppressor of mitophagy through its ability to link the OMM to the ER, potentially limiting the accessibility of other ubiquitination substrates to PINK1 and PRKN. PINK1, PRKN and the AAA-ATPase VCP disrupt contact between mitochondria and the ER via MFN2 ubiquitination, retrotranslocation and turnover from the mitochondrial membrane. Our study provides insight into the role of OMM remodeling in mitophagy.  相似文献   

4.
Damaged or dysfunctional mitochondria are toxic to the cell by producing reactive oxygen species and releasing cell death factors. Therefore, timely removal of these organelles is critical to cellular homeostasis and viability. Mitophagy is the mechanism of selective degradation of mitochondria via autophagy. The significance of mitophagy in kidney diseases, including ischemic acute kidney injury (AKI), has yet to be established, and the involved pathway of mitophagy remains poorly understood. Here, we show that mitophagy is induced in renal proximal tubular cells in both in vitro and in vivo models of ischemic AKI. Mitophagy under these conditions is abrogated by Pink1 and Park2 deficiency, supporting a critical role of the PINK1-PARK2 pathway in tubular cell mitophagy. Moreover, ischemic AKI is aggravated in pink1 andpark2 single- as well as double-knockout mice. Mechanistically, Pink1 and Park2 deficiency enhances mitochondrial damage, reactive oxygen species production, and inflammatory response. Taken together, these results indicate that PINK1-PARK2-mediated mitophagy plays an important role in mitochondrial quality control, tubular cell survival, and renal function during AKI.  相似文献   

5.
Dysregulation of the PINK1/Parkin-mediated mitophagy is essential to Parkinson’s disease. Although important progress has been made in previous researches, the biochemical reagents that induce global and significant mitochondrial damage may still hinder deeper insights into the mechanisms of mitophagy. The origin of PINK1/Parkin pathway activation in mitophagy remains elusive. In this study, we develop an optical method, ultra-precise laser stimulation (UPLaS) that delivers a precise and noninvasive stimulation onto a submicron region in a single mitochondrial tubular structure. UPLaS excites localized mitochondrial Ca2+ (mitoCa2+) oscillations with tiny perturbation to mitochondrial membrane potential (MMP) or mitochondrial reactive oxygen species. The UPLaS-induced mitoCa2+ oscillations can directly induce PINK1 accumulation and Parkin recruitment on mitochondria. The Parkin recruitment by UPLaS requires PINK1. Our results provide a precise and noninvasive technology for research on mitophagy, which stimulates target mitochondria with little damage, and reveal mitoCa2+ oscillation directly initiates the PINK1-Parkin pathway for mitophagy without MMP depolarization.Subject terms: Mitophagy, Calcium signalling  相似文献   

6.
《Autophagy》2013,9(11):1897-1899
It was postulated that mitophagy removes damaged mitochondria, which is critical for proper cellular homeostasis; dysfunctional mitochondria can generate excess reactive oxygen species (ROS) that can further damage the organelle as well as other cellular components. Although proper cell physiology requires the maintenance of a healthy pool of mitochondria, little is known about the mechanism underlying the recognition and selection of damaged organelles. We investigated the cellular fate of mitochondria damaged by the action of oxidative phosphorylation inhibitors (antimycin A, myxothiazol, KCN, oligomycin, CCCP). Only antimycin A and KCN effectively induce nonspecific autophagy, but not mitophagy, in a wild-type strain; however, low or no autophagic activity was measured in strains deficient in genes, including ATG32, ATG11 and BCK1, encoding proteins that are involved in mitophagy. These results provide evidence for a major role of specific mitophagy factors in the control of a general autophagic cellular response induced by mitochondrial alteration. Moreover, significant reduction of cytochrome b, one of the components of the respiratory chain, could be the first signal of this induction pathway.  相似文献   

7.
《Autophagy》2013,9(8):1476-1477
Mitochondrial quality control has an impact on many diseases, but intense research has focused on the action of 2 genes linked to heritable forms of Parkinson disease (PD), PINK1 and PARK2/parkin, which act in a common pathway to promote mitophagy. However, criticism has been raised that little evidence links this mechanism to sporadic PD. To gain a greater insight into the mechanisms of PINK1-PARK2 mediated mitophagy, we undertook a genome-wide RNAi screen in Drosophila and human cell models. Strikingly, we discovered several components of the lipogenesis pathway, including SREBF1, playing a conserved role in mitophagy. Our results suggest that lipids influence the stabilization of PINK1 during the initiation of mitophagy. Importantly, SREBF1 has previously been identified as a risk locus for sporadic PD, and thus implicates aberrant mitophagy as contributing to sporadic PD. Our findings suggest a role for lipid synthesis in PINK1-PARK2 mediated mitophagy, and propose a mechanistic link between familial and sporadic PD, supporting a common etiology.  相似文献   

8.
Cerebral ischemia induces massive mitochondrial damage. These damaged mitochondria are cleared, thus attenuating brain injury, by mitophagy. Here, we identified the involvement of BNIP3L/NIX in cerebral ischemia-reperfusion (I-R)-induced mitophagy. Bnip3l knockout (bnip3l?/?) impaired mitophagy and aggravated cerebral I-R injury in mice, which can be rescued by BNIP3L overexpression. The rescuing effects of BNIP3L overexpression can be observed in park2?/? mice, which showed mitophagy deficiency after I-R. Interestingly, bnip3l and park2 double-knockout mice showed a synergistic mitophagy deficiency with I-R treatment, which further highlighted the roles of BNIP3L-mediated mitophagy as being independent from PARK2. Further experiments indicated that phosphorylation of BNIP3L serine 81 is critical for BNIP3L-mediated mitophagy. Nonphosphorylatable mutant BNIP3LS81A failed to counteract both mitophagy impairment and neuroprotective effects in bnip3l?/? mice. Our findings offer insights into mitochondrial quality control in ischemic stroke and bring forth the concept that BNIP3L could be a potential therapeutic target for ischemic stroke, beyond its accepted role in reticulocyte maturation.  相似文献   

9.
To minimize oxidative damage to the cell, malfunctioning mitochondria need to be removed by mitophagy. In neuronal axons, mitochondrial damage may occur in distal regions, far from the soma where most lysosomal degradation is thought to occur. In this paper, we report that PINK1 and Parkin, two Parkinson’s disease–associated proteins, mediate local mitophagy of dysfunctional mitochondria in neuronal axons. To reduce cytotoxicity and mimic physiological levels of mitochondrial damage, we selectively damaged a subset of mitochondria in hippocampal axons. Parkin was rapidly recruited to damaged mitochondria in axons followed by formation of LC3-positive autophagosomes and LAMP1-positive lysosomes. In PINK1−/− axons, damaged mitochondria did not accumulate Parkin and failed to be engulfed in autophagosomes. Similarly, initiation of mitophagy was blocked in Parkin−/− axons. Our findings demonstrate that the PINK1–Parkin-mediated pathway is required for local mitophagy in distal axons in response to focal damage. Local mitophagy likely provides rapid neuroprotection against oxidative stress without a requirement for retrograde transport to the soma.  相似文献   

10.
Mitophagy alleviates neuronal damage after cerebral ischemia by selectively removing dysfunctional mitochondria. Phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy is the most well-known type of mitophagy. However, little is known about the role of PINK1/Parkin-mediated mitophagy in ischemic tolerance induced by hypoxic postconditioning (HPC) with 8% O2 against transient global cerebral ischemia (tGCI). Hence, we aimed to test the hypothesis that HPC-mediated PINK1/Parkin-induced mitochondrial ubiquitination and promotes mitophagy, thus exerting neuroprotection in the hippocampal CA1 subregion against tGCI. We found that mitochondrial clearance was disturbed at the late phase of reperfusion after tGCI, which was reversed by HPC, as evidenced by the reduction of the translocase of outer mitochondrial membrane 20 homologs (TOMM20), translocase of inner mitochondrial membrane 23 (TIMM23) and heat shock protein 60 (HSP60) in CA1 after HPC. In addition, HPC further increased the ratio of LC3II/I in mitochondrial fraction and promoted the formation of mitophagosomes in CA1 neurons after tGCI. The administration of lysosome inhibitor chloroquine (CQ) intraperitoneally or mitophagy inhibitor (Mdivi-1) intracerebroventricularly abrogated HPC-induced mitochondrial turnover and neuroprotection in CA1 after tGCI. We also found that HPC activated PINK1/Parkin pathway after tGCI, as shown by the augment of mitochondrial PINK1 and Parkin and the promotion of mitochondrial ubiquitination in CA1. In addition, PINK1 or Parkin knockdown with small-interfering RNA (siRNA) suppressed the activation of PINK1/Parkin pathway and hampered mitochondrial clearance and attenuated neuroprotection induced by HPC, whereas PINK1 overexpression promoted PINK1/Parkin-mediated mitophagy and ameliorated neuronal damage in CA1 after tGCI. Taken together, the new finding in this study is that HPC-induced neuroprotection against tGCI through promoting mitophagy mediated by PINK1/Parkin-dependent pathway.Subject terms: Cell death in the nervous system, Stroke  相似文献   

11.
12.
Mitochondrial dysfunction is causatively linked to organismal aging and the development of degenerative diseases. Here we describe stress-dependent opposing roles of mitophagy, the selective autophagic degradation of mitochondria, in aging and life-span control. We report that the ablation of the mitochondrial superoxide dismutase which is involved in reactive oxygen species (ROS) balancing, does not affect life span of the fungal aging model Podospora anserina, although superoxide levels are strongly increased and complex I-dependent respiration is impaired. This unexpected phenotype depends on functional autophagy, particularly mitophagy, which is upregulated during aging of this mutant. It identifies mitophagy as a prosurvival response involved in the control of mitohormesis, the well-known beneficial effect of mild mitochondrial oxidative stress. In contrast, excessive superoxide stress turns mitophagy to a prodeath pathway and leads to accelerated aging. Overall our data uncover mitophagy as a dynamic pathway that specifically responds to different levels of mitochondrial oxidative stress and thereby affects organismal aging.  相似文献   

13.
《Autophagy》2013,9(5):660-662
Much evidence links mitochondrial dysfunction to the death of neurons in Parkinson disease (PD), and is particularly emphasized by our growing understanding of the function of genes linked to recessively inherited PD such as PINK1, parkin and DJ-1. Recent work has revealed an exciting link between the PINK1-Parkin pathway and the autophagic turnover of dysfunctional mitochondrial (mitophagy). We have recently shown that mitofusin is ubiquitinated by Parkin when it is recruited to dysfunctional mitochondria. Recent work also shows that regulated fission and fusion events help segregate dysfunctional mitochondria prior to mitophagy. Here we hypothesize how Parkin-mediated ubiquitination of Mfn may play a role in this mechanism.  相似文献   

14.
《Autophagy》2013,9(1):76-78
Mitochondria, which are a major source of intracellular reactive oxygen species (ROS), are extremely vulnerable to oxidative stress. We recently reported that selenite treatment of various glioma cells induced a non-apoptotic cell death accompanied by excessive mitophagy (selective autophagy of damaged mitochondria). Examination of various ROS revealed that the superoxide anion played a key role in selenite-induced mitochondrial damage, mitophagy and cell death. Treatment with superoxide generators (diquat and paraquat) was sufficient to trigger mitophagy in glioma cells. Small interfering RNA-mediated knockdown of ATG6 or ATG7 attenuated selenite-induced mitophagy and cell death, demonstrating that the mitophagic pathway contributes to selenite-induced cell death. The effect of selenite in glioma cells may thus provide an example of superoxide-mediated mitophagic cell death, i.e., cell death caused by excessive mitophagy.

Addendum to: Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ, Lee SJ, Choi KS. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res 2007; 67:6314-24  相似文献   

15.
The lifespan of schizophrenia patients is significantly shorter than the general population. Olanzapine is one of the most commonly used antipsychotic drugs (APDs) for treating patients with psychosis, including schizophrenia and bipolar disorder. Despite their effectiveness in treating positive and negative symptoms, prolonged exposure to APDs may lead to accelerated aging and cognitive decline, among other side effects. Here we report that dysfunctional mitophagy is a fundamental mechanism underlying accelerated aging induced by olanzapine, using in vitro and in vivo (Caenorhabditis elegans) models. We showed that the aberrant mitophagy caused by olanzapine was via blocking mitophagosome–lysosome fusion. Furthermore, olanzapine can induce mitochondrial damage and hyperfragmentation of the mitochondrial network. The mitophagosome–lysosome fusion in olanzapine-induced aging models can be restored by a mitophagy inducer, urolithin A, which alleviates defective mitophagy, mitochondrial damage, and fragmentation of the mitochondrial network. Moreover, the mitophagy inducer ameliorated behavioral changes induced by olanzapine, including shortened lifespan, and impaired health span, learning, and memory. These data indicate that olanzapine impairs mitophagy, leading to the shortened lifespan, impaired health span, and cognitive deficits. Furthermore, this study suggests the potential application of mitophagy inducers as therapeutic strategies to reverse APD-induced adverse effects associated with accelerated aging.  相似文献   

16.
《Autophagy》2013,9(10):1494-1509
SNCA (α-synuclein) misfolding and aggregation is strongly associated with both idiopathic and familial forms of Parkinson disease (PD). Evidence suggests that SNCA has an impact on cell clearance routes and protein quality control systems such as the ubiquitin-proteasome system (UPS) and autophagy. Recent advances in the key role of the autosomal recessive PARK2/PARKIN and PINK1 genes in mitophagy, highlighted this process as a prominent new pathogenic mechanism. Nevertheless, the role of autophagy/mitophagy in the pathogenesis of sporadic and autosomal dominant familial forms of PD is still enigmatic. The yeast Saccharomyces cerevisiae is a powerful “empty room” model that has been exploited to clarify different molecular aspects associated with SNCA toxicity, which combines the advantage of being an established system for aging research. The contribution of autophagy/mitophagy for the toxicity induced by the heterologous expression of the human wild-type SNCA gene and the clinical A53T mutant during yeast chronological life span (CLS) was explored. A reduced CLS together with an increase of autophagy and mitophagy activities were observed in cells expressing both forms of SNCA. Impairment of mitophagy by deletion of ATG11 or ATG32 resulted in a CLS extension, further implicating mitophagy in the SNCA toxicity. Deletion of SIR2, essential for SNCA toxicity, abolished autophagy and mitophagy, thereby rescuing cells. These data show that Sir2 functions as a regulator of autophagy, like its mammalian homolog, SIRT1, but also of mitophagy. Our work highlights that increased mitophagy activity, mediated by the regulation of ATG32 by Sir2, is an important phenomenon linked to SNCA-induced toxicity during aging.  相似文献   

17.
ABSTRACT

Macroautophagy/autophagy is an evolutionarily conserved cellular degradation and recycling process that is tightly regulated by external stimuli, diet, and stress. Our recent findings suggest that in C. elegans, a nutrient sensing pathway mediated by MTORC2 (mechanistic target of rapamycin kinase complex 2) and its downstream effector kinase SGK-1 (serum- and glucocorticoid-inducible kinase homolog 1) suppresses autophagy, involving mitophagy. Induced autophagy/mitophagy in MTORC2-deficient animals slows down development and impairs reproduction independently of the SGK-1 effectors DAF-16/FOXO and SKN-1/NFE2L2/NRF2. In this punctum, we discuss how TORC2-SGK-1 signaling might regulate autophagic turnover and its impact on mitochondrial homeostasis via linking mitochondria-derived reactive oxygen species (mtROS) production to mitophagic turnover.  相似文献   

18.
Cigarette smoke (CS)-induced mitochondrial damage with increased reactive oxygen species (ROS) production has been implicated in COPD pathogenesis by accelerating senescence. Mitophagy may play a pivotal role for removal of CS-induced damaged mitochondria, and the PINK1 (PTEN-induced putative kinase 1)-PARK2 pathway has been proposed as a crucial mechanism for mitophagic degradation. Therefore, we sought to investigate to determine if PINK1-PARK2-mediated mitophagy is involved in the regulation of CS extract (CSE)-induced cell senescence and in COPD pathogenesis. Mitochondrial damage, ROS production, and cell senescence were evaluated in primary human bronchial epithelial cells (HBEC). Mitophagy was assessed in BEAS-2B cells stably expressing EGFP-LC3B, using confocal microscopy to measure colocalization between TOMM20-stained mitochondria and EGFP-LC3B dots as a representation of autophagosome formation. To elucidate the involvement of PINK1 and PARK2 in mitophagy, knockdown and overexpression experiments were performed. PINK1 and PARK2 protein levels in lungs from patients were evaluated by means of lung homogenate and immunohistochemistry. We demonstrated that CSE-induced mitochondrial damage was accompanied by increased ROS production and HBEC senescence. CSE-induced mitophagy was inhibited by PINK1 and PARK2 knockdown, resulting in enhanced mitochondrial ROS production and cellular senescence in HBEC. Evaluation of protein levels demonstrated decreased PARK2 in COPD lungs compared with non-COPD lungs. These results suggest that PINK1-PARK2 pathway-mediated mitophagy plays a key regulatory role in CSE-induced mitochondrial ROS production and cellular senescence in HBEC. Reduced PARK2 expression levels in COPD lung suggest that insufficient mitophagy is a part of the pathogenic sequence of COPD.  相似文献   

19.
Mitophagy, the selective removal of damaged or excess mitochondria by autophagy, is an important process in cellular homeostasis. The outer mitochondrial membrane (OMM) proteins NIX, BNIP3, FUNDC1, and Bcl2‐L13 recruit ATG8 proteins (LC3/GABARAP) to mitochondria during mitophagy. FKBP8 (also known as FKBP38), a unique member of the FK506‐binding protein (FKBP) family, is similarly anchored in the OMM and acts as a multifunctional adaptor with anti‐apoptotic activity. In a yeast two‐hybrid screen, we identified FKBP8 as an ATG8‐interacting protein. Here, we map an N‐terminal LC3‐interacting region (LIR) motif in FKBP8 that binds strongly to LC3A both in vitro and in vivo. FKBP8 efficiently recruits lipidated LC3A to damaged mitochondria in a LIR‐dependent manner. The mitophagy receptors BNIP3 and NIX in contrast are unable to mediate an efficient recruitment of LC3A even after mitochondrial damage. Co‐expression of FKBP8 with LC3A profoundly induces Parkin‐independent mitophagy. Strikingly, even when acting as a mitophagy receptor, FKBP8 avoids degradation by escaping from mitochondria. In summary, this study identifies novel roles for FKBP8 and LC3A, which act together to induce mitophagy.  相似文献   

20.
Although the Parkin/PINK1 pathway has received considerable attention in recent years as a key regulator of mitophagy in mammals, it is important to recognize that multiple mitophagy receptors like BNIP3, NIX, and FUNDC1 exist that can promote the selective clearance of mitochondria in the absence of Parkin. In this issue, Bhujabal et al expand the repertoire of Parkin‐independent mitophagy receptors to include the anti‐apoptotic protein, FKBP8. The authors demonstrate that FKBP8 interacts preferentially with LC3A via its LIR motif to destroy damaged mitochondria. During the process, FKBP8 escapes from the destruction presumably to prevent apoptosis during mitophagy 1 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号