首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Recent studies have highlighted the importance of regulatory non‐coding RNAs and epigenetics in controlling the differentiation of somatic stem cells. Two major pathways characterize these fields: micro‐RNAs (miRNAs) and DNA methylation. In this issue of EMBO Reports, Lv et al show that during mammalian corticogenesis, miR‐15b inhibits cytosine demethylation by targeting Tet3, a key methylcytosine dioxygenase. This leads to the epigenetic downregulation of cyclin D1. As a result, cell cycle and differentiation of neural progenitors are altered, promoting their switch to neurogenesis. Hence, Lv et al elegantly bring together miRNAs and DNA methylation in the cell cycle control of neural progenitors and neurogenesis.  相似文献   

6.
Stem cells have been found in most tissues/organs. These somatic stem cells produce replacements for lost and damaged cells, and it is not completely understood how this regenerative capacity becomes diminished during aging. To study the possible involvement of epigenetic changes in somatic stem cell aging, we used murine hematopoiesis as a model system. Hematopoietic stem cells (HSCs) were enriched for via Hoechst exclusion activity (SP-HSC) from young, medium-aged and old mice and subjected to comprehensive, global methylome (MeDIP-seq) analysis. With age, we observed a global loss of DNA methylation of approximately 5%, but an increase in methylation at some CpG islands. Just over 100 significant (FDR < 0.2) aging-specific differentially methylated regions (aDMRs) were identified, which are surprisingly few considering the profound age-based changes that occur in HSC biology. Interestingly, the polycomb repressive complex -2 (PCRC2) target genes Kiss1r, Nav2 and Hsf4 were hypermethylated with age. The promoter for the Sdpr gene was determined to be progressively hypomethylated with age. This occurred concurrently with an increase in gene expression with age. To explore this relationship further, we cultured isolated SP-HSC in the presence of 5-aza-deoxycytdine and demonstrated a negative correlation between Sdpr promoter methylation and gene expression. We report that DNA methylation patterns are well preserved during hematopoietic stem cell aging, confirm that PCRC2 targets are increasingly methylated with age, and suggest that SDPR expression changes with age in HSCs may be regulated via age-based alterations in DNA methylation.  相似文献   

7.
《Epigenetics》2013,8(2):173-182
The first cell differentiation in the mammalian development separates the trophoblast and embryonic cell lineages, resulting in the formation of the trophectoderm (TE) and inner cell mass (ICM) in blastocysts. Although a lower level of global DNA methylation in the genome of the TE compared with ICM has been suggested, the dynamics of the DNA methylation profile during TE/ICM differentiation has not been elucidated. To address this issue, first we identified tissue-dependent and differentially methylated regions (T-DMRs) between trophoblast stem (TS) and embryonic stem (ES) cells. Most of these TS–ES T-DMRs were also methylated differentially between trophoblast and embryonic tissues of embryonic day (E) 6.5 mouse embryos. Furthermore, we found that the human genomic regions homologous to mouse TS–ES T-DMRs were methylated differentially between human placental tissues and ES cells. Collectively, we defined them as cell-lineage-based T-DMRs between trophoblast and embryonic cell lineages (T–E T-DMRs). Then, we examined TE and ICM cells isolated from mouse E3.5 blastocysts. Interestingly, all T-DMRs examined, including the Elf5, Pou5f1 and Nanog loci, were in the nearly unmethylated status in both TE and ICM and exhibited no differences. The present results suggest that the establishment of DNA methylation profiles specific to each cell lineage follows the first morphological specification. Together with previous reports on asymmetry of histone modifications between TE and ICM, the results of the current study imply that histone modifications function as landmarks for setting up cell-lineage-specific differential DNA methylation profiles.  相似文献   

8.
Real space flight and modeled microgravity conditions result in changes in the expression of genes that control important cellular functions. However, the mechanisms for microgravity‐induced gene expression changes are not clear. The epigenetic changes of DNA methylation and chromatin histones modifications are known to regulate gene expression. The objectives of this study were to investigate whether simulated microgravity alters (a) the DNA methylation and histone acetylation, and (b) the expression of DNMT1, DNMT3a, DNMT3b, and HDAC1 genes that regulate epigenetic events. To achieve these objectives, human T‐lymphocyte cells were grown in a rotary cell culture system (RCCS) that simulates microgravity, and in parallel under normal gravitational conditions as control. The microgravity‐induced DNA methylation changes were detected by methylation sensitive‐random amplified polymorphic DNA (MS‐RAPD) analysis of genomic DNA. The gene expression was measured by Quantitative Real‐time PCR. The expression of DNMT1, DNMT3a, and DNMT3b was found to be increased at 72 h, and decreased at 7 days in microgravity exposed cells. The MS‐RAPD analysis revealed that simulated microgravity exposure results in DNA hypomethylation and mutational changes. Gene expression analysis revealed microgravity exposure time‐dependent decreased expression of HDAC1. Decreased expression of HDAC1 should result in increased level of acetylated histone H3, however a decreased level of acetylated H3 was observed in microgravity condition, indicating thereby that other HDACs may be involved in regulation of H3 deacetylation. The findings of this study suggest that epigenetic events could be one of the mechanistic bases for microgravity‐induced gene expression changes and associated adverse health effects. J. Cell. Biochem. 111: 123–129, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.

Background and Aims

Hepatic stellate cells (HSC), which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC.

Methods and Results

The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism.

Conclusions

In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism.  相似文献   

10.
ObjectivesDNA damages pose threats to haematopoietic stem cells (HSC) maintenance and haematopoietic system homeostasis. Quiescent HSCs in adult mouse bone marrow are resistant to DNA damage, while human umbilical cord blood‐derived proliferative HSCs are prone to cell death upon ionizing radiation. Murine embryonic HSCs proliferate in foetal livers and divide symmetrically to generate HSC pool. How murine embryonic HSCs respond to DNA damages is not well‐defined.Materials and methodsMice models with DNA repair molecule Nbs1 or Nbs1/p53 specifically deleted in embryonic HSCs were generated. FACS analysis, in vitro and in vivo HSC differentiation assays, qPCR, immunofluorescence and Western blotting were used to delineate roles of Nbs1‐p53 signaling in HSCs and haematopoietic progenitors.ResultsNbs1 deficiency results in persistent DNA breaks in embryonic HSCs, compromises embryonic HSC development and finally results in mouse perinatal lethality. The persistent DNA breaks in Nbs1 deficient embryonic HSCs render cell cycle arrest, while driving a higher rate of cell death in haematopoietic progenitors. Although Nbs1 deficiency promotes Atm‐Chk2‐p53 axis activation in HSCs and their progenies, ablation of p53 in Nbs1 deficient HSCs accelerates embryonic lethality.ConclusionsOur study discloses that DNA double‐strand repair molecule Nbs1 is essential in embryonic HSC development and haematopoiesis. Persistent DNA damages result in distinct cell fate in HSCs and haematopoietic progenitors. Nbs1 null HSCs tend to be maintained through cell cycle arrest, while Nbs1 null haematopoietic progenitors commit cell death. The discrepancies are mediated possibly by different magnitude of p53 signaling.  相似文献   

11.
Polycomb-group proteins mark specific chromatin conformations in embryonic and somatic stem cells that are critical for maintenance of their "stemness". These proteins also mark altered chromatin modifications identified in various cancers. In normal differentiated cells or advanced cancerous cells, these polycomb-associated loci are frequently associated with increased DNA methylation. It has thus been hypothesized that changes in DNA methylation status within polycomb-associated loci may dictate cell fate and that abnormal methylation within these loci may be associated with tumor development. To assess this, we examined the methylation states of four polycomb target loci -Trip10, Casp8AP2, ENSA, and ZNF484 - in liver cancer. These four targets were selected because their methylation levels are increased during mesenchymal stem cell-to-liver differentiation. We found that these four loci were hypomethylated in most early-stage liver cancer specimens. For comparison, two non-polycomb tumor suppressor genes, HIC1 and RassF1A, were also examined. Whereas the methylation level of HIC1 did not differ significantly between normal and tumor samples, RassF1A was significantly hypermethylated in liver tumor samples. Unsupervised clustering analysis classified the methylation changes within polycomb and non-polycomb targets to be independent, indicating independent epigenetic evolution. Thus, pre-deposited polycomb marks within somatic stem cells may contribute to the determination of methylation changes during hepatic tumorigenesis.  相似文献   

12.
Hematopoietic homeostasis depends on the maintenance of hematopoietic stem cells (HSCs), which are regulated within a specialized bone marrow (BM) niche. When HSC sense external stimuli, their adhesion status may be critical for determining HSC cell fate. The cell surface molecule, integrin αvβ3, is activated through HSC adhesion to extracellular matrix and niche cells. Integrin β3 signaling maintains HSCs within the niche. Here, we showed the synergistic negative regulation of the pro‐inflammatory cytokine interferon‐γ (IFNγ) and β3 integrin signaling in murine HSC function by a novel definitive phenotyping of HSCs. Integrin αvβ3 suppressed HSC function in the presence of IFNγ and impaired integrin β3 signaling mitigated IFNγ‐dependent negative action on HSCs. During IFNγ stimulation, integrin β3 signaling enhanced STAT1‐mediated gene expression via serine phosphorylation. These findings show that integrin β3 signaling intensifies the suppressive effect of IFNγ on HSCs, which indicates that cell adhesion via integrin αvβ3 within the BM niche acts as a context‐dependent signal modulator to regulate the HSC function under both steady‐state and inflammatory conditions.  相似文献   

13.
Folic acid deficiency during pregnancy is believed to be a high‐risk factor for neural tube defects (NTDs). Disturbed epigenetic modifications, including miRNA regulation, have been linked to the pathogenesis of NTDs in those with folate deficiency. However, the mechanism by which folic acid‐regulated miRNA influences this pathogenesis remains unclear. It is believed that DNA methylation is associated with dysregulated miRNA expression. To clarify this issue, here we measured the methylation changes of 22 miRNAs in 57 human NTD cases to explore whether such changes are involved in miRNA regulation in NTD cases through folate metabolism. In total, eight of the 22 miRNAs tested reduced their methylation modifications in NTD cases, which provide direct evidence of the roles of interactions between DNA methylation and miRNA level in these defects. Among the findings, there was a significant association between folic acid concentration and hsa‐let‐7 g methylation level in NTD cases. Hypomethylation of hsa‐let‐7 g increased its own expression level in both NTD cases and cell models, which indicated that hsa‐let‐7 g methylation directly regulates its own expression. Overexpression of hsa‐let‐7 g, along with its target genes, disturbed the migration and proliferation of SK‐N‐SH cells, implying that hsa‐let‐7 g plays important roles in the prevention of NTDs by folic acid. In summary, our data suggest a relationship between aberrant methylation of hsa‐let‐7 g and disturbed folate metabolism in NTDs, implying that improvements in nutrition during early pregnancy may prevent such defects, possibly via the donation of methyl groups for miRNAs.  相似文献   

14.
The identification and purification of murine multipotent mesenchymal stem cells (MSCs) have been difficult due to their low frequency, the presence of contaminating cell types and lack of unambiguous markers. Using a magnetic micro‐beads negative selection technique to remove hematopoietic cells from mouse bone marrow stromal cells (BMSCs), our lab recently isolated a highly purified osteoprogenitor (HipOP) population that was also enriched for other mesenchymal precursors, including MSCs [Itoh and Aubin, 2009 ]. We now report that HipOPs are also highly enriched in vascular endothelial cells (VECs), which we hypothesized were an accessory cell type regulating osteogenesis. However, when VECs were immunodepleted from HipOPs with anti‐CD31 antibodies, the resulting CD31(?) HipOP population had equal osteogenic capacity to the HipOPs in vitro and in vivo. Analysis of gene expression of Ncad, Pth1r, Ang1, Cxcl12, Jag1, Pdgfr‐β, α‐sma, Desmin, and Ng2 suggested that both HipOPs and CD31(?) HipOPs are hemopoietic stem cell (HSC) niche populations. However, the data support the view that osteoblast differentiation and depletion of VECs modulate the HSC niche. J. Cell. Biochem. 114: 1066–1073, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
17.
Epigenetic silencing of cancer‐related genes by abnormal methylation and the reversal of this process by DNA methylation inhibitors represents a promising strategy in cancer therapy. As DNA methylation affects gene expression and chromatin structure, we investigated the effects of novel DNMT (DNA methyltransferase) inhibitor, RG108, alone and in its combinations with structurally several HDAC (histone deacetylase) inhibitors [sodium PB (phenyl butyrate) or BML‐210 (N‐(2‐aminophenyl)‐N′phenyloctanol diamine), and all‐trans RA (retinoic acid)] in the human PML (promyelocytic leukaemia) NB4 cells. RG108 at different doses from 20 to 100 μM caused time‐, but not a dose‐dependent inhibition of NB4 cell proliferation without cytotoxicity. Temporal pretreatment with RG108 before RA resulted in a dose‐dependent cell growth inhibition and remarkable acceleration of granulocytic differentiation. Prolonged treatments with RG108 and RA in the presence of HDAC inhibitors significantly increased differentiation. RG108 caused time‐dependent re‐expression of methylation‐silenced E‐cadherin, with increase after temporal or continuous treatments with RG108 and RA, or RA together with PB in parallel, in cell maturation, suggesting the role of E‐cadherin as a possible therapeutic marker. These processes required both PB‐induced hyperacetylation of histone H4 and trimethylation of histone H3 at lysine 4, indicating the cooperative action of histone modifications and DNA methylation/demethylation in derepression of E‐cadherin. This work provides novel experimental evidence of the beneficial role of the DNMT inhibitor RG108 in combinations with RA and HDACIs in the effective differentiation of human PML based on epigenetics.  相似文献   

18.
The underlying mechanism for the establishment and maintenance of differential DNA methylation in imprinted genes is largely unknown. Previous studies using Dnmt1 knock-out embryonic stem (ES) cells demonstrated that, although re-expression of DNMT1 restored DNA methylation in the non-imprinted regions, the methylation patterns of imprinted genes could be restored only through germ line passage. Knock-out of Uhrf1, an accessory factor essential for DNMT1-mediated DNA methylation, in mouse ES cells also led to impaired global DNA methylation and loss of genomic imprinting. Here, we demonstrate that, although re-expression of UHRF1 in Uhrf1−/− ES cells restored DNA methylation for the bulk genome but not for most of the imprinted genes, it did rescue DNA methylation for the imprinted H19, Nnat, and Dlk1 genes. Analysis of histone modifications at the differential methylated regions of the imprinted genes by ChIP assays revealed that for the imprinted genes whose DNA methylation could be restored upon re-expression of UHRF1, the active histone markers (especially H3K4me3) were maintained at considerably low levels, and low levels were maintained even in Uhrf1−/− ES cells. In contrast, for the imprinted genes whose DNA methylation could not be restored upon UHRF1 re-expression, the active histone markers (especially H3K4me3) were relatively high and became even higher in Uhrf1−/− ES cells. Our study thus supports a role for histone modifications in determining the establishment of imprinting-related DNA methylation and demonstrates that mouse ES cells can be a valuable model for mechanistic study of the establishment and maintenance of differential DNA methylation in imprinted genes.  相似文献   

19.
Gene expression is regulated by DNA as well as histone modifications but the crosstalk and mechanistic link between these epigenetic signals are still poorly understood. Here we investigate the multi-domain protein Uhrf2 that is similar to Uhrf1, an essential cofactor of maintenance DNA methylation. Binding assays demonstrate a cooperative interplay of Uhrf2 domains that induces preference for hemimethylated DNA, the substrate of maintenance methylation, and enhances binding to H3K9me3 heterochromatin marks. FRAP analyses revealed that localization and binding dynamics of Uhrf2 in vivo require an intact tandem Tudor domain and depend on H3K9 trimethylation but not on DNA methylation. Besides the cooperative DNA and histone binding that is characteristic for Uhrf2, we also found an opposite expression pattern of uhrf1 and uhrf2 during differentiation. While uhrf1 is mainly expressed in pluripotent stem cells, uhrf2 is upregulated during differentiation and highly expressed in differentiated mouse tissues. Ectopic expression of Uhrf2 in uhrf1(-/-) embryonic stem cells did not restore DNA methylation at major satellites indicating functional differences. We propose that the cooperative interplay of Uhrf2 domains may contribute to a tighter epigenetic control of gene expression in differentiated cells.  相似文献   

20.
McMurray EN  Schmidt JV 《Genomics》2012,100(3):184-194
Genomic imprinting at the Delta-like 1 (Dlk1)-Maternally expressed gene 3 (Meg3) locus is regulated by the Meg3 differentially methylated region (DMR), but the mechanism by which this DMR acts is unknown. The goal of this study was to analyze the Meg3 DMR during imprinting establishment and maintenance for the presence of histone modifications and trans-acting DNA binding proteins using chromatin immunoprecipitation. In embryonic stem (ES) cells, where Meg3 is biallelically expressed, the DMR showed variable DNA methylation, with biallelic methylation at one region but paternal allele-specific methylation at another. All histone modifications detected at the Meg3 DMR of ES cells were biallelic. In embryonic day 12.5 (e12.5) embryos, where Meg3 is maternally expressed, the paternal Meg3 DMR was methylated, and activating histone modifications were specific to the maternal DMR. DNA-binding proteins that represent potential regulatory factors were identified in both ES cells and embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号