首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetic regulation in plant abiotic stress responses   总被引:2,自引:0,他引:2  
In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress‐responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross‐talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.  相似文献   

2.
Day JJ  Sweatt JD 《Neuron》2011,70(5):813-829
Although the critical role for epigenetic mechanisms in development and cell differentiation has long been appreciated, recent evidence reveals that these mechanisms are also employed in postmitotic neurons as a means of consolidating and stabilizing cognitive-behavioral memories. In this review, we discuss evidence for an "epigenetic code" in the central nervous system that mediates synaptic plasticity, learning, and memory. We consider how specific epigenetic changes are regulated and may interact with each other during memory formation and how these changes manifest functionally at the cellular and circuit levels. We also describe a central role for mitogen-activated protein kinases in controlling chromatin signaling in plasticity and memory. Finally, we consider how aberrant epigenetic modifications may lead to cognitive disorders that affect learning and memory, and we review the therapeutic potential of epigenetic treatments for the amelioration of these conditions.  相似文献   

3.
4.
5.
张旭  李晴 《生命科学》2014,(11):1176-1186
真核生物中的DNA复制,不但要保证DNA编码的基因组信息高保真复制,也要保证染色质结构所蕴含的表观遗传组稳定传递,这个过程对于维持基因组的完整性和稳定性至关重要。时至今日,人们对DNA复制的机制已经有了深入的认识,但是对染色质复制以及表观遗传信息传递的了解才刚刚开始。组蛋白是染色质结构中最主要的蛋白组成部分,其上面丰富的转录后修饰是表观遗传调控的核心方式之一。从最近几年组蛋白的修饰研究进展入手,主要综述在DNA复制过程中组蛋白修饰如何参与染色质复制的调控。  相似文献   

6.
Our knowledge base involving the biochemical participants of epigenetic control has expanded greatly over the last decade. The role of epigenetic marks to DNA and histones controlled by non-coding RNAs is one of the most intensely studied areas of biology today. This review covers many of the mechanisms that non-coding RNAs and other molecules use to control gene expression and eventually affect responses to the environment. In the first part of the review, we discuss the array of covalent modifications to the genome that constitute the epigenome, which consists of the histone variants, covalent modifications, and post-translational modifications that result in gene expression changes. How the histone variants and post-translational modifications including, acetylation, methylation, phosphorylation, ubiquitination and sumoylation help form the epigenome is also summarized. Our eventual understanding of how the environment controls these modifications will open incredible opportunities in agriculture, medicine and the development of practical tools for biology. In the second part of this review we discuss the growing list of environmentally-mediated epigenetic modifications, and examples of transgenerational epigenetic inheritance events, that may begin to change our views of adaptive responses to the environment and evolution.  相似文献   

7.
8.
Epigenetic modifications influence gene expression pattern and provide a unique signature of a cell differentiation status. Without external stimuli or signalling events, this cell identity remains stable and unlikely to change over many cell divisions. The epigenetic signature of a particular cell fate therefore needs to be replicated faithfully in daughter cells; otherwise a cell lineage cannot be maintained. However, the mechanism of transmission of cellular memory from mother to daughter cells remains unclear. It has been suggested that the inheritance of an active or silent gene state involves different kinds of epigenetic mechanisms, e.g. DNA methylation, histone modifications, replacement of histone variants, Polycomb group (PcG) and Trithorax group (TrxG) proteins. Emerging evidence supports the role of histone variant H3.3 in maintaining an active gene status and in remodelling nucleosomal composition. Here we discuss some recent findings on the propagation of epigenetic memory and propose a model for the inheritance of an active gene state through the interaction of H3.3 with other epigenetic components.  相似文献   

9.
10.
Tackling the epigenome in the pluripotent stem cells   总被引:2,自引:0,他引:2  
Embryonic stem cells are unique in their abilities of self-renewal and to differentiate into many, if not all, cellular lineages. Transcrip- tional regulation, epigenetic modifications and chromatin structures are the key modulators in controlling such pluripotency nature of embryonic stem cell genomes, particularly in the developmental decisions and the maintenance of cell fates. Among them, epigenetic regulation of gene expression is mediated partly by covalent modifications of core histone proteins including methylation, phosphoryla- tion and acetylation. Moreover, the chromatins in stem cell genome appear as a highly organized structure containing distinct functional domains. Recent rapid progress of new technologies enables us to take a global, unbiased and comprehensive view of the epigenetic modifications and chromatin structures that contribute to gene expression regulation and cell identity during diverse developmental stages. Here, we summarized the latest advances made by high throughput approaches in profiling epigenetic modifications and chromatin con- formations, with an emphasis on genome-wide analysis of histone modifications and their implications in pluripotency nature of embry- onic stem cells.  相似文献   

11.
DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function.  相似文献   

12.
In eukaryotes, epigenetic-based mechanisms are involved in almost all the important biological processes. Amongst different epigenetic regulation pathways, the dynamic covalent modifications on histones are the most extensively investigated and characterized types. The covalent modifications on histone can be “read” by specific protein domains and then subsequently trigger downstream signaling events. Plants generally possess epigenetic regulation systems similar to animals and fungi, but also exhibit some plant-specific features. Similar to animals and fungi, plants require distinct protein domains to specifically “read” modified histones in both modification-specific and sequence-specific manners. In this review, we will focus on recent progress of the structural studies on the recognition of the epigenetic marks on histones by plant reader proteins, and further summarize the general and exceptional features of plant histone mark readers.  相似文献   

13.
Cytosine methylation is the major epigenetic modification of metazoan DNA. Although there is strong evidence that active DNA demethylation occurs in animal cells, the molecular details of this process are unknown. The recent discovery of the TET protein family (TET1–3) 5-methylcytosine hydroxylases has provided a new entry point to reveal the identity of the long-sought DNA demethylase. Here, we review the recent progress in understanding the function of TET proteins and 5-hydroxymethylcytosine (5hmC) through various biochemical and genomic approaches, the current evidence for a role of 5hmC as an early intermediate in active DNA demethylation and the potential functions of TET proteins and 5hmC beyond active DNA demethylation. We also discuss how future studies can extend our knowledge of this novel epigenetic modification.  相似文献   

14.
Epigenetic mechanisms in neurological disease   总被引:1,自引:0,他引:1  
The exploration of brain epigenomes, which consist of various types of DNA methylation and covalent histone modifications, is providing new and unprecedented insights into the mechanisms of neural development, neurological disease and aging. Traditionally, chromatin defects in the brain were considered static lesions of early development that occurred in the context of rare genetic syndromes, but it is now clear that mutations and maladaptations of the epigenetic machinery cover a much wider continuum that includes adult-onset neurodegenerative disease. Here, we describe how recent advances in neuroepigenetics have contributed to an improved mechanistic understanding of developmental and degenerative brain disorders, and we discuss how they could influence the development of future therapies for these conditions.  相似文献   

15.
Reprogramming of somatic cells to induced pluripotent stem cells(iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects i PSC reprograming,pluripotency, and differentiation capacity. Here, we review the epigenetic changes with a focus on histone modification(methylation and acetylation) and DNA modification(methylation) during i PSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules influencing the epigenetic reprogramming of somatic cells. Finally,we discuss how to improve i PSC generation and pluripotency through epigenetic manipulations.  相似文献   

16.
17.
Histone variants and epigenetic inheritance   总被引:1,自引:0,他引:1  
Nucleosome particles, which are composed of core histones and DNA, are the basic unit of eukaryotic chromatin. Histone modifications and histone composition determine the structure and function of the chromatin; this genome packaging, often referred to as "epigenetic information", provides additional information beyond the underlying genomic sequence. The epigenetic information must be transmitted from mother cells to daughter cells during mitotic division to maintain the cell lineage identity and proper gene expression. However, the mechanisms responsible for mitotic epigenetic inheritance remain largely unknown. In this review, we focus on recent studies regarding histone variants and discuss the assembly pathways that may contribute to epigenetic inheritance. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.  相似文献   

18.
19.
Cytosine methylation is the major epigenetic modification of metazoan DNA. Although there is strong evidence that active DNA demethylation occurs in animal cells, the molecular details of this process are unknown. The recent discovery of the TET protein family (TET1–3) 5-methylcytosine hydroxylases has provided a new entry point to reveal the identity of the long-sought DNA demethylase. Here, we review the recent progress in understanding the function of TET proteins and 5-hydroxymethylcytosine (5hmC) through various biochemical and genomic approaches, the current evidence for a role of 5hmC as an early intermediate in active DNA demethylation and the potential functions of TET proteins and 5hmC beyond active DNA demethylation. We also discuss how future studies can extend our knowledge of this novel epigenetic modification.Key words: TET1, 5-hydroxymethylcytosine, active DNA demethylation, epigenetic, DNA methylation, hippocampus, electroconvulsive stimulation, Gadd45b, BER  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号