首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reprogramming of somatic cells to a pluripotent state holds huge potentials for regenerative medicine. However, a debate over which method is better, somatic cell nuclear transfer (SCNT) or induced pluripotent stem (iPS) cells, still persists. Both approaches have the potential to generate patient-specific pluripotent stem cells for replacement therapy. Yet, although SCNT has been successfully applied in various vertebrates, no human pluripotent stem cells have been generated by SCNT due to technical, legal and ethical difficulties. On the other hand, human iPS cell lines have been reported from both healthy and diseased individuals. A recent study reported the generation of triploid human pluripotent stem cells by transferring somatic nuclei into oocytes, a variant form of SCNT. In this essay, we discuss this progress and the potentials of these two reprogramming approaches for regenerative medicine.  相似文献   

2.
Since the first cell therapeutic study to repair articular cartilage defects in the knee in 1994, several clinical studies have been reported. An overview of the results of clinical studies did not conclusively show improvement over conventional methods, mainly because few studies reach level I of evidence for effects on middle or long term. However, these explorative trials have provided valuable information about study design, mechanisms of repair and clinical outcome and have revealed that much is still unknown and further improvements are required. Furthermore, cellular and molecular studies using new technologies such as cell tracking, gene arrays and proteomics have provided more insight in the cell biology and mechanisms of joint surface regeneration. Besides articular cartilage, cartilage of other anatomical locations as well as progenitor cells are now considered as alternative cell sources. Growth Factor research has revealed some information on optimal conditions to support cartilage repair. Thus, there is hope for improvement. In order to obtain more robust and reproducible results, more detailed information is needed on many aspects including the fate of the cells, choice of cell type and culture parameters. As for the clinical aspects, it becomes clear that careful selection of patient groups is an important input parameter that should be optimized for each application. In addition, the study outcome parameters should be improved. Although reduced pain and improved function are, from the patient's perspective, the most important outcomes, there is a need for more structure/tissue-related outcome measures. Ideally, criteria and/or markers to identify patients at risk and responders to treatment are the ultimate goal for these more sophisticated regenerative approaches in joint surface repair in particular, and regenerative medicine in general.  相似文献   

3.
Identification of breast cancer not being a single disease but backed by multiple heterogeneous oncogenic subpopulations is of growing interest in developing personalized therapies to provide optimal outcomes. Through this review, we bring attention to evolution of tumor and microenvironment heterogeneity as a predominant challenge in stratifying therapies. Establishment of a ‘precancer niche’ serves as a prerequisite for genetically initiated cells to survive and promote neoplastic evolution towards clinically established cancer through development of tumor and its microenvironment. Additionally, continuous evolutionary interplay between tumor and recruited stromal cells along with many other components in the tumor microenvironment adds up to further complexity in developing targeted therapies. However, through continued excellence in developing high throughput technologies including the advent of single-nucleus sequencing, which makes it possible to sequence individual tumor cells, leads to improved abilities in decoding the heterogenic perturbations through reconstruction of tumor evolutionary lineages. Furthermore, simple liquid-biopsies in form of enumeration/characterization of circulating tumor cells and tumor microvesicles found in peripheral circulation, shed from distinct tumor lesions, show great promise as prospective biomarkers towards better prognosis in tailoring individualized therapies to breast cancer patients. Lastly, by means of network medicinal approaches, it is seemingly possible to develop a map of the cell's intricate wiring network, helping to identify appropriate interconnected protein networks through which the disease spreads, offering a more patient-specific outcome. Although these therapeutic interventions through designing personalized oncology-based trials are promising, owing to continuous tumor evolution, targeting genome instability survival pathways might become an economically viable alternative.  相似文献   

4.
Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker-based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max-Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs.  相似文献   

5.
Background aimsRegeneration of the occluded peripheral arteries by autologous stem cell therapy is an emerging treatment modality for no-option patients with peripheral artery disease (PAD). The purpose of this study was to assess safety and efficacy of in vitro–expanded, peripheral blood-derived, autologous stem cells (VesCell) in no-option patients with PAD.MethodsA phase II, open-label, randomized clinical study was performed on 20 patients to investigate the safety and efficacy of VesCell therapy at 1 and 3 months of follow-up. The long-term (2 years) efficacy of the therapy was also evaluated.ResultsNo side effects of VesCell therapy were found. During the 3 month follow-up in the control group, one death occurred and six major amputations were performed; in the treated group, there were no deaths or major amputations. The difference of limb loss is significant between the two groups. At 2-year follow-up in the control group, two deaths and six major amputations occurred; in the treated group, there were three major amputations. At 3-month follow-up, the change in hemodynamic parameters showed a significant increase in the treated group over the control group; in the treated group, further improvement was detected at 2 years. As the result of the VesCell treatment, change in pain score, wound healing and walking ability test showed an improvement compared with the control group; at 2 years, incremental improvement was observed.ConclusionsPeripheral blood-derived, in vitro–expanded autologous angiogenic precursor therapy appears to be a safe, promising and effective adjuvant therapy for PAD patients.  相似文献   

6.
Purpose: Elevation of high-sensitivity cardiac troponin T (hs-cTnT) is associated with an increased risk of cardiovascular disease (CVD). This study determined whether hs-cTnT was detectable with N-terminal pro-b-type natriuretic peptide (NT-proBNP) and related to CV risk factors in a general Japanese population.

Materials and methods: The Tohoku Medical Megabank Organization pooled individual participant data for a population-based cohort study in the Iwate prefecture (n?=?30,193, age = 60.2?±?11.5?year).

Results: Hs-cTnT levels were higher in participants with hypertension, diabetes mellitus than in participants without these conditions (all ps < 0.001). Logistic regression analysis demonstrated that NT-proBNP was strongly associated with elevation of hs-cTnT (OR = 3.35, 95% CI = 2.90–3.89, p?<?0.001). The receiver operating characteristic curve analysis showed that hs-cTnT was one of useful biomarker for the differentiation of high risk for CVD (the Suita score ≥ 56) from a general population. Logistic regression analysis demonstrated hs-cTnT levels were related to the CVD high risk group (OR = 2.67, 95% CI = 2.28–3.14, p?<?0.001).

Conclusions: Hs-cTnT levels are associated with elevation of NT-proBNP and high Suita score, which suggests that elevated hs-cTnT is related to subclinical myocardial damage and indicates CV risk.  相似文献   


7.
Retinal degeneration due to genetic, diabetic and age-related disease is the most common cause of blindness in the developed world. Blindness occurs through the loss of the light-sensing photoreceptors; to restore vision, it would be necessary to introduce alternative photosensitive components into the eye. The recent development of an electronic prosthesis placed beneath the severely diseased retina has shown that subretinal stimulation may restore some visual function in blind patients. This proves that residual retinal circuits can be reawakened after photoreceptor loss and defines a goal for stem-cell-based therapy to replace photoreceptors. Advances in reprogramming adult cells have shown how it may be possible to generate autologous stem cells for transplantation without the need for an embryo donor. The recent success in culturing a whole optic cup in vitro has shown how large numbers of photoreceptors might be generated from embryonic stem cells. Taken together, these threads of discovery provide the basis for optimism for the development of a stem-cell-based strategy for the treatment of retinal blindness.  相似文献   

8.
The use of existing drugs for new therapeutic applications, commonly referred to as drug repositioning, is a way for fast and cost-efficient drug discovery. Drug repositioning in oncology is commonly initiated by in vitro experimental evidence that a drug exhibits anticancer cytotoxicity. Any independent verification that the observed effects in vitro may be valid in a clinical setting, and that the drug could potentially affect patient survival in vivo is of paramount importance. Despite considerable recent efforts in computational drug repositioning, none of the studies have considered patient survival information in modelling the potential of existing/new drugs in the management of cancer. Therefore, we have developed DRUGSURV; this is the first computational tool to estimate the potential effects of a drug using patient survival information derived from clinical cancer expression data sets. DRUGSURV provides statistical evidence that a drug can affect survival outcome in particular clinical conditions to justify further investigation of the drug anticancer potential and to guide clinical trial design. DRUGSURV covers both approved drugs (∼1700) as well as experimental drugs (∼5000) and is freely available at http://www.bioprofiling.de/drugsurv.  相似文献   

9.
10.
BACKGROUND: It was shown that a traditional Chinese medicine, Hochu-ekki-to (HET), had adjuvant effects in influenza vaccination in an animal experiment. This, however, could not be assessed in a clinical study. METHODS: Thirty-two healthy subjects were randomly assigned to two groups (control and HET groups) in a double-blind manner. HET subjects (n=17) took 7.5 g of HET/day for two weeks; control subjects took the same amount of indistinguishable placebo. Then subjects were vaccinated against influenza (H1N1, H3N2 and B/Shandong). Hemagglutinin titers and natural killer (NK) activity were measured at weeks 0, 1, 2, 4, and 12. RESULTS: Antiinfluenza titers against the three viruses were increased continuously for the first two weeks and leveled off. However, there were no significant differences in any titers between the two groups. NK activity peaked at week 2 without any inter-group differences. CONCLUSION: We could not find any adjuvant effects of HET in this experimental condition.  相似文献   

11.
Regenerative medicine is a burgeoning field that is important to combat challenging diseases and functional impairments. Compared with traditional cell therapies with evident shortcomings (e.g., cell suspension injection or tissue engineering with scaffolds), scaffold-free cell sheet technology enables transplanted cells to be grafted and fully maintain their viability on target sites. Clinical and experimental studies have advanced the application of cell sheet technology to numerous tissues and organs (e.g., liver, cornea and bone). However, previous reviews have failed to discuss vital aspects of this rapidly developing technology, and many new challenges are gradually emerging. This review aims to provide a comprehensive introduction to cell sheet technology from cell selection to the ultimate applications of cell sheets, and challenges and future visions are also described.  相似文献   

12.
Background: Complex procedures involving a facebow transfer and the use of lingualised teeth are deemed to have a positive influence on the chewing ability with complete dentures. Objectives: To determine if patients’ ratings of their ability to chew depend on the method of complete denture fabrication. Methods: Edentulous patients (n = 20) participated in a within‐subject crossover trial. Each patient received two sets of new complete dentures. One pair was manufactured based on intraoral tracing of centric relation and facebow transfer; semi‐anatomical teeth with lingualised occlusion denture (LOD) were chosen. The second pair was made using a simplified procedure without facebow transfer; jaw relations were recorded with wax occlusion rims, and anatomical teeth with a first premolar/canine‐guidance (CGD) were selected. The dentures were delivered in randomised order, and each was worn for 3 months. Three months after delivery, patients’ ratings of each new prosthesis were recorded on visual analogue scales for their ability to chew seven index foods. Repeated measurements analysis of variance was performed to investigate possible carry‐over effects accounting for confounding by treatment period. Results: When comparing the two treatments, participants rated their ability to chew in general, to masticate carrots, hard sausage, steak and raw apple in particular, was significantly better with the CGD (anatomical teeth) than with the LOD (p < 0.05). Conclusion: Comprehensive methods for the fabrication of complete dentures including semi‐anatomical lingualised teeth and a full registration do not seem to influence the perceived chewing ability, when compared with more simple procedures. Chewing ability for tough foods appears to benefit from the use of anatomical teeth.  相似文献   

13.
Abstract

The limited regenerative capacity of articular cartilage and deficiencies of current treatments have motivated the investigation of new repair technologies. In vitro cartilage generation using primary cell sources is limited by cell availability and expansion potential. Pluripotent stem cells possess the capacity for chondrocytic differentiation and extended expansion, providing a potential future solution to cell-based cartilage regeneration. However, despite successes in producing cartilage using adult and embryonic stem cells, the translation of these technologies to the clinic has been severely limited. This review discusses recent advances in stem cell-based cartilage tissue engineering and the major current limitations to clinical translation of these products. Concerns regarding appropriate animal models and studies, stem cell manufacturing, and relevant regulatory processes and guidelines will be addressed. Understanding the significant hurdles limiting the clinical use of stem cell-based cartilage may guide future developments in the fields of tissue engineering and regenerative medicine.  相似文献   

14.
通过外源转录调控因子的诱导,使成体细胞重编程为胚胎干细胞(ES细胞)样的多能细胞,这种细胞称为诱导多能干细胞(iPS细胞),这一方法被称为iPS技术。目前,iPS技术已先后在小鼠、人、猕猴、大鼠和猪中成功应用,建立了相应的iPS细胞系,并获得了iPS细胞嵌合小鼠和四倍体克隆小鼠。尽管iPS与ES细胞在形态和生长特性上有许多相同之处,但iPS细胞的建立需要较独特的诱导培养体系和鉴定方法。以下结合近年来iPS技术的发展和本实验室的相关研究,对iPS细胞的建立和培养体系的优化进行了深入探讨。  相似文献   

15.
The optimal source of stem cells for regenerative medicine is a major question. Embryonic stem (ES) cells have shown promise for pluripotency but have ethical issues and potential to form teratomas. Pluripotent stem cells have been produced from skin cells by either viral‐, plasmid‐ or transposon‐mediated gene transfer. These stem cells have been termed induced pluripotent stem cells or iPS cells. iPS cells may also have malignant potential and are inefficiently produced. Embryonic stem cells may not be suited for individualized therapy, since they can undergo immunologic rejection. To address these fundamental problems, our group is developing hair follicle pluripotent stem (hfPS) cells. Our previous studies have shown that mouse hfPS cells can differentiate to neurons, glial cells in vitro, and other cell types, and can promote nerve and spinal cord regeneration in vivo. hfPS cells are located above the hair follicle bulge in what we have termed the hfPS cell area (hfPSA) and are nestin positive and keratin 15 (K‐15) negative. Human hfPS cells can also differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In the present study, human hfPS cells were transplanted in the severed sciatic nerve of the mouse where they differentiated into glial fibrillary‐acidic‐protein (GFAP)‐positive Schwann cells and promoted the recovery of pre‐existing axons, leading to nerve generation. The regenerated nerve recovered function and, upon electrical stimulation, contracted the gastrocnemius muscle. The hfPS cells can be readily isolated from the human scalp, thereby providing an accessible, autologous and safe source of stem cells for regenerative medicine that have important advantages over ES or iPS cells. J. Cell. Biochem. 107: 1016–1020, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.  相似文献   

17.
ABSTRACT

Introduction: Inter-individual variability in response to drug treatment has induced an increased demand for decisions via personalize medicine. Also, the contribution of proteomics to the era of personalized medicine would seem to be vital in improving therapeutic outcomes.

Areas covered: We review validated biomarkers discovered by proteomics techniques and their use in personalized medicine with the focus on kidney diseases. We discuss this topic with a special emphasis on recent publications and relevant initiatives and depict some limitations that remain for personalized medicine.

Expert opinion: The development of highly accurate biomarkers is essential for optimizing the management of kidney diseases. Various biomarkers of kidney diseases have been identified using proteomic techniques. However, only a few of these biomarkers showed the potential to be used in clinical practice concerning personalized medicine. Therefore, it becomes evident that the combination of multiple biomarkers confers higher accuracy and the ability to depict complex pathophysiological conditions, a prerequisite for personalized treatment. CKD273, a multimarker panel for early CKD detection may serve as a first example for personalized medicine in nephrology. Based on this successful example, proteomics is expected to develop into the key technology to guide personalized intervention.  相似文献   

18.
In recent decades, mesenchymal stromal cells (MSCs) biomedical utilizing has attracted worldwide growing attention. After the first report of the human MSCs obtaining from the bone marrow (BM) tissue, these cells were isolated from wide types of the other tissues, ranging from adipose tissue to dental pulp. Their specific characteristics, comprising self-renewality, multipotency, and availability accompanied by their immunomodulatory properties and little ethical concern denote their importance in the context of regenerative medicine. Considering preclinical studies, MSCs can modify immune reactions during tissue repair and restoration, providing suitable milieu for tissue recovery; on the other hand, they can be differentiated into comprehensive types of the body cells, such as osteoblast, chondrocyte, hepatocyte, cardiomyocyte, fibroblast, and neural cells. Though a large number of studies have investigated MSCs capacities in regenerative medicine in varied animal models, the oncogenic capability of unregulated MSCs differentiation must be more assessed to enable their application in the clinic. In the current review, we provide a brief overview of MSCs sources, isolation, and expansion as well as immunomodulatory activities. More important, we try to collect and discuss recent preclinical and clinical research and evaluate current challenges in the context of the MSC-based cell therapy for regenerative medicine.  相似文献   

19.
20.
Mesenchymal Stem Cells (MSCs) are non-hematopoietic and multipotent stem cells, which have been considered in regenerative medicine. These cells are easily separated from different sources, such as bone marrow (BM), umbilical cord (UC), adipose tissue (AT), and etc. MSCs have the differentiation capability into chondrocytes, osteocytes, and adipocytes; This differentiation potential along with the paracrine properties have made them a key choice for tissue repair. MSCs also have various advantages over other stem cells, which is why they have been extensively studied in recent years. The effectiveness of MSCs-based therapies depend on several factors, including differentiation status at the time of use, concentration per injection, delivery method, the used vehicle, and the nature and extent of the damage. Although, MSCs have emerged promising sources for regenerative medicine, there are potential risks regarding their safety in their clinical use, including tumorigenesis, lack of availability, aging, and sensitivity to toxic environments. In this study, we aimed to discuss how MSCs may be useful in treating defects and diseases. To this aim, we will review recent advances of MSCs action mechanisms in regenerative medicine, as well as the most recent clinical trials. We will also have a brief overview of MSCs resources, differences between their sources, culture conditions, extraction methods, and clinical application of MSCs in various fields of regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号