共查询到20条相似文献,搜索用时 0 毫秒
1.
The 115-residue protein CM2 from Influenza C virus has been recently characterized as a tetrameric integral membrane glycoprotein. Infrared spectroscopy and site-directed infrared dichroism were utilized here to determine its transmembrane structure. The transmembrane domain of CM2 is alpha-helical, and the helices are tilted by beta = (14.6 +/- 3.0) degrees from the membrane normal. The rotational pitch angle about the helix axis omega for the 1-(13)C-labeled residues Gly(59) and Leu(66) is omega = (218 +/- 17) degrees, where omega is defined as zero for a residue pointing in the direction of the helix tilt. A detailed structure was obtained from a global molecular dynamics search utilizing the orientational data as an energy refinement term. The structure consists of a left-handed coiled-coil with a helix crossing angle of Omega = 16 degrees. The putative transmembrane pore is occluded by the residue Met(65). In addition hydrogen/deuterium exchange experiments show that the core is not accessible to water. 相似文献
2.
ErbB-2 is a member of the family of epidermal growth factor receptors, which shows an oncogenic mutation in the rat gene neu, Val664Glu in the transmembrane domain that causes permanent dimerisation and subsequently leads to uncontrollable cell division and tumour formation. We have obtained the alpha-helical structure of the mutant transmembrane domain dimer experimentally with site-specific infrared dichroism (SSID) based on six transmembrane peptides with 13C18O carbonyl group-labelled residues. The derived orientational data indicate a local helix tilt ranging from 28(+/-6) degrees to 22(+/-4) degrees. Altogether using orientational constraints from SSID and experimental alpha-helical constraints while performing a systematic conformational search including molecular dynamics simulation in a lipid bilayer, we have obtained a unique experimentally defined atomic structure. The resulting structure consists of a right handed alpha-helical bundle with the residues Ile659, Val663, Leu667, Ile671, Val674 and Leu679 in the dimerisation interface. The right-handed bundle is in contrast to the left-handed structures obtained in previous modelling efforts. In order to facilitate tight helical packing, the spacious Glu664 residues do not interact directly but with water molecules that enter the bilayer. 相似文献
3.
4.
Contribution of energy values to the analysis of global searching molecular dynamics simulations of transmembrane helical bundles
下载免费PDF全文

Molecular interactions between transmembrane alpha-helices can be explored using global searching molecular dynamics simulations (GSMDS), a method that produces a group of probable low energy structures. We have shown previously that the correct model in various homooligomers is always located at the bottom of one of various possible energy basins. Unfortunately, the correct model is not necessarily the one with the lowest energy according to the computational protocol, which has resulted in overlooking of this parameter in favor of experimental data. In an attempt to use energetic considerations in the aforementioned analysis, we used global searching molecular dynamics simulations on three homooligomers of different sizes, the structures of which are known. As expected, our results show that even when the conformational space searched includes the correct structure, taking together simulations using both left and right handedness, the correct model does not necessarily have the lowest energy. However, for the models derived from the simulation that uses the correct handedness, the lowest energy model is always at, or very close to, the correct orientation. We hypothesize that this should also be true when simulations are performed using homologous sequences, and consequently lowest energy models with the right handedness should produce a cluster around a certain orientation. In contrast, using the wrong handedness the lowest energy structures for each sequence should appear at many different orientations. The rationale behind this is that, although more than one energy basin may exist, basins that do not contain the correct model will shift or disappear because they will be destabilized by at least one conservative (i.e. silent) mutation, whereas the basin containing the correct model will remain. This not only allows one to point to the possible handedness of the bundle, but can be used to overcome ambiguities arising from the use of homologous sequences in the analysis of global searching molecular dynamics simulations. In addition, because clustering of lowest energy models arising from homologous sequences only happens when the estimation of the helix tilt is correct, it may provide a validation for the helix tilt estimate. 相似文献
5.
Pexiganan (Gly-Ile-Gly-Lys-Phe-Leu-Lys-Lys-Ala-Lys-Lys-Phe-Gly-Lys-Ala-Phe-Val-Lys-Ile-Leu-Lys-Lys), a 22 amino acid peptide, is an analogue of the magainin family of antimicrobial peptides present in the skin of the African clawed frog. Conformational analysis of pexiganan was carried out in different solvent environments for the first time. Organic solvents, trifluoroethanol (TFE) and methanol, were used to study the secondary structural preferences of this peptide in the membrane-mimicking environments. In addition, aqueous (D2O) and dimethyl sulfoxide (DMSO) solutions were also investigated to study the role of hydrogen bonding involved in the secondary structure formation. Fourier transform infrared absorption, vibrational circular dichroism (VCD), and electronic circular dichroism (ECD) measurements were carried out under the same conditions to ascertain the conformational assignments in different solvents. All these spectroscopic measurements suggest that the pexiganan peptide has the tendency to adopt different structures in different environments. Pexiganan appears to adopt an alpha-helical conformation in TFE, a sheet-stabilized beta-turn structure in methanol, a random coil with beta-turn structure in D2O, and a solvated beta-turn structure in DMSO. 相似文献
6.
Changes in protein secondary structure during gluten deformation studied by dynamic fourier transform infrared spectroscopy 总被引:1,自引:0,他引:1
Wellner N Mills EN Brownsey G Wilson RH Brown N Freeman J Halford NG Shewry PR Belton PS 《Biomacromolecules》2005,6(1):255-261
Fourier transform infrared (FT-IR) spectroscopy was used to monitor changes in the secondary structure of wheat prolamins, the main components of gluten, during mechanical deformation in a series of cycles of extension and relaxation. A sample derived from protein bodies isolated from developing grain showed a buildup of persistent beta-sheet structure. In gluten, the ratio of beta-sheet to random and beta-turn structures changed on extension. After the applied force was released, the sample recovered some of its original shape and structure, but the material became stiffer in consecutive extension cycles. The relationship between gluten structure and mechanical properties is discussed in terms of a model in which conversion of beta-turn to beta-sheet structure is a response to extension and a means by which elastic energy is stored in the system. 相似文献
7.
C-deuterated alanine: a new label to study membrane protein structure using site-specific infrared dichroism.
下载免费PDF全文

The helix tilt and rotational orientation of the transmembrane segment of M2, a 97-residue protein from the Influenza A virus that forms H(+)-selective ion channels, have been determined by attenuated total reflection site-specific infrared dichroism using a novel labeling approach. Triple C-deuteration of the methyl group of alanine in the transmembrane domain of M2 was used, as such modification shifts the asymmetric and symmetric stretching vibrations of the methyl group to a transparent region of the infrared spectrum. Structural information can then be obtained from the dichroic ratios corresponding to these two vibrations. Two consecutive alanine residues were labeled to enhance signal intensity. The results obtained herein are entirely consistent with previous site-specific infrared dichroism and solid-state nuclear magnetic resonance experiments, validating C-deuterated alanine as an infrared structural probe that can be used in membrane proteins. This new label adds to the previously reported (13)C [double bond] (18)O and C-deuterated glycine as a tool to analyze the structure of simple transmembrane segments and will also increase the feasibility of the study of polytopic membrane proteins with site-specific infrared dichroism. 相似文献
8.
Dong A Meyer JD Brown JL Manning MC Carpenter JF 《Archives of biochemistry and biophysics》2000,383(1):148-155
Alpha1-proteinase inhibitor (alpha1Pi) and ovalbumin are both members of the serpin superfamily. They share about a 30% sequence identity and exhibit great similarity in their three-dimensional structures. However, no apparent functional relationship has been found between the two proteins. Unlike alpha1Pi, ovalbumin shows no inhibitory effect to serine proteases. To see whether or not a conformational factor(s) may contribute to the functional difference, we carried out comparative analysis of the two proteins' secondary structure, thermal stability, and H-D exchange using FT-IR and CD spectroscopy. FT-IR analysis reveals significant differences in the amide I spectral patterns of the two proteins. Upon thermal denaturation, both proteins exhibit a strong low-wavenumber beta-sheet band at 1624 cm(-1) and a weak high-wavenumber beta-sheet band at 1694 cm(-1), indicative of intermolecular aggregate formation. However, the midpoint of the thermal-induced transition of alpha1Pi (approximately 55 degrees C) is 18 degrees C lower than that of ovalbumin (approximately 73 degrees C). The thermal stability analysis provides new insight into the structural changes associated with denaturation. The result of H-D exchange explains some puzzling spectral differences between the two proteins in D2O reported previously. 相似文献
9.
Hector L. Casal Ian C.P. Smith David G. Cameron Henry H. Mantsch 《生物化学与生物物理学报:生物膜》1979,550(1):145-149
The first application of infrared difference spectroscopy to the study of a natural biological membrane is described. Perdeuterated palmitic acid was incorporated biosynthetically into the lipids of the plasma membrane of Acholeplasma laidlawii and the temperature-induced structural rearrangement of the endogenous lipids monitored via their C2H vibrational modes. Changes in infrared parameters were studied between 0 and 50°C and contrasted with those occurring in the model membrane system of . The phase transition of the biomembrane occurs over a 20°C range with the temperature of the maximum rate of change of absorbance coinciding with that of the sharp phase transition of the model membrane. 相似文献
10.
Y Imamoto T Hirano H Imai H Kandori A Maeda T Yoshizawa M Groesbeek J Lugtenburg Y Shichida 《Biochemistry》1999,38(36):11749-11754
The effect of anion binding on iodopsin, the chicken red-sensitive cone visual pigment, was studied by measurements of the Fourier transform infrared spectra of chloride- and nitrate-bound forms of iodopsin at 77 K. In addition to the blue shift of the absorption maximum upon substituting nitrate for chloride, the C=C stretching vibrations of iodopsin and its photoproducts were upshifted 5-6 cm(-)(1). The C=NH and C=ND stretching vibrations were the same in wavenumber between the chloride- and nitrate-bound forms, indicating that the binding of either chloride or nitrate has no effect on the interaction between the protonated Schiff base and the counterion. The vibrational bands of iodopsin in the fingerprint and the hydrogen out-of-plane wagging regions were insensitive to anion substitution, suggesting that local chromophore interactions with the anions are not crucial for the absorption spectral shift. In contrast, bathoiodopsin in the chloride-bound form exhibited an intense C(14)H wagging mode, whose intensity was considerably weakened upon substitution of nitrate for chloride. These results suggest that binding of chloride changes the environment near the C(14) position of the chromophore, which could be one of the factors in the thermal reverse reaction of bathoiodopsin to iodopsin in the chloride-bound form. 相似文献
11.
Daniel J. Laird Melinda M. Mulvihill Jennifer A. Whiles Lillig 《Biophysical chemistry》2009,145(2-3):72-78
As more peptide secondary structures deduced by infrared spectroscopy (IR) have been reported in the literature, there have been overlaps in assignments of elements of secondary structure to carbonyl vibrational frequencies. We have investigated this phenomenon with regards to the use of IR for monitoring membrane-induced structural changes using conformationally diverse peptides. These IR studies, complemented by circular dichroism (CD) experiments, revealed that peptide–solvent interactions can mask membrane-induced conformational changes monitored by IR. A structural transition from random coil to α-helix upon the binding of mastoparan X to a membrane was clearly observed by CD but obscured in the amide I region of the IR spectrum. In addition, unlike the buried helical peptides gramicidin D and P16 in micelles, the amide II peak for mastoparan X was absent, likely due to H–D exchange. This suggests information on the peptide's membrane-bound solvent accessibility could be obtained from this region of the spectrum. 相似文献
12.
Structures have been determined for a potent analogue of vasoactive intestinal peptide (VIP), Ac-[Lys12, Lys14, Nle17, Val26, Thr28]VIP (VIP'), in methanol/water solutions. In CD studies, both VIP and VIP' were helical in methanol/water, with the percentage of alpha-helix increasing with percentage methanol. The pH had little effect on the structure. Complete 1H NMR assignments were made for VIP' in 25% methanol at pH 4 and 6 and in 50% methanol at pH 6, using two-dimensional COSY, NOESY, and relay-COSY experiments. There were no widespread changes in chemical shifts between the samples at pH 4 and 6; however, widespread changes were observed between the samples in 25% and 50% methanol. Complete sets of NOEs were obtained for VIP' in 25% methanol, pH 4, and in 50% methanol, pH 6. These NOEs were converted into distance constraints and applied in molecular dynamics and energy minimization calculations using the program CHARMM. A set of low-energy structures was obtained for VIP' in each solvent system. In 25% methanol, VIP' has two helical segments at residues 9-17 and 23-28. The remainder of the structure is not well determined. In 50% methanol, residues 8-26 form a regular, well-defined alpha-helix and residues 5-8 form a type III beta-turn. The remaining residues are not ordered. These structural assessments agree with the CD data. In the lowest energy structure in 50% methanol, the side chains of Asp3, Phe6, Thr7, and Tyr10 are clustered together--these residues are conserved throughout the family of peptide hormones homologous to VIP. 相似文献
13.
Tripeptidesserve as model systems for understanding the so-called random-coil state of peptides and proteins. While it is well known that polyproline or proline-rich polypeptides adopt the very regular polyproline-II (PPII) or left-handed 3(1)-helix conformation, it was thus far not clear whether this is also the predominant structure adopted by proline-containing tripeptides. To clarify this issue, we have investigated the amide I' band profile in the ir, isotropic, and anisotropic Raman, and vibrational circular dichroism (VCD) spectrum of cationic and zwitterionic tri-proline in D(2)O. The data were analyzed by modifying a recently developed algorithm, which allows one to obtain the central dihedral angles of tripeptides from the amide I' band intensities (R. Schweitzer-Stenner, Biophysical Journal, 2002, Vol. 83, pp. 523-532). Our analysis revealed that the peptide adopts a nearly canonical PPII structure in water with psi and phi values in the range of 175 degrees -165 degrees and -70 degrees -(-80 degrees ), respectively. This is fully confirmed by the respective electronic ultraviolet-CD spectra. Our result indicates that the strong PPII propensity of trans proline results from local interactions between the pyrrolidine ring and the backbone and is not due to any long-range interactions. 相似文献
14.
To investigate the local structure that causes the differences in molecular properties between rod and cone visual pigments, we have measured the difference infrared spectra between chicken green and its photoproduct at 77 K and compared them with those from bovine and chicken rhodopsins. In contrast to the similarity of the vibrational bands of the chromophore, those of the protein part were notably different between chicken green and the rhodopsins. Like the rhodopsins, chicken green has an aspartic acid at position 83 (D83) but exhibited no signals due to the protonated carboxyl of D83 in the C=O stretching region, suggesting that the molecular contact between D83 and G120 through water molecule evidenced in bovine rhodopsin is absent in chicken green. A pair of positive and negative bands due to the peptide backbone (amide I) was prominent in chicken green, while the rhodopsins exhibited only small bands in this region. Furthermore, chicken green exhibited characteristic paired bands around 1480 cm(-1), which were identified as the imide bands of P189 using site-directed mutagenesis. P189, situated in the putative second extracellular loop, is conserved in all the known cone visual pigments but not in rhodopsins. Thus, some region of the second extracellular loop including P189 is situated near the chromophore and changes its environment upon formation of the batho-intermediate. The results noted above indicate that differences in the protein parts between chicken green and the rhodopsins alter the changes seen in the protein upon photoisomerization of the chromophore. Some of these changes appear to be the pathway from the chromophore to cytoplasmic surface of the pigment and thus could affect the activation process of transducin. 相似文献
15.
Glycophorin from the human erythrocyte membrane has been isolated in pure form and reconstituted into large unilamellar vesicles comprised of binary mixtures of 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) and chain perdeuterated 1,2-dimyristoyl-3-sn-phosphatidylcholine (DMPC-d54). The effect of temperature and protein on lipid structure and mixing was monitored by using Fourier transform infrared spectroscopy; deuteration of one of the components of the mixture permits observation of the protein interaction with each lipid species. The melting curves were analyzed by assuming that each lipid chain can exist in one of two physical states (i.e., gel or liquid crystalline), characterized by a temperature-dependent Lorentzian distribution for the line shape of the C-H or C-D stretching vibrations. The fraction of each lipid component melted at temperatures within the two-phase region of the phase diagram was calculated and approximate phase diagrams were constructed. Addition of protein lowers the liquidus line of the phase diagram while leaving the solidus line essentially unchanged. No lipid phase separation is observed. The effect of protein is more pronounced on the DPPC component than on the DMPC-d54. The former is significantly more disordered and/or fluidized at all lipid mole fractions in the ternary system than in the binary phospholipid mixture. 相似文献
16.
The roles of lipid unsaturation and lipid-protein interactions in maintaining the physiologically required membrane dynamics were investigated in a cyanobacterium strain, Synechocystis PCC 6803. The specific effects of lipid unsaturation on the membrane structure were addressed by the use of desaturase-deficient (desA(-)/desD(-)) mutant cells (which contain only oleic acid as unsaturated fatty acid species) of Synechocystis PCC 6803. The dynamic properties of the membranes were determined from the temperature dependence of the symmetric CH(2) stretching vibration frequency, which is indicative of the lipid fatty acyl chain disorder. It was found that a similar membrane dynamics is maintained at any growth temperature, in both the wild-type and the mutant cell membranes, with the exception of mutant cells grown at the lower physiological temperature limit. It seems that in the physiological temperature range the desaturase system of the cells can modulate the level of lipid desaturation sufficiently to maintain similar membrane dynamics. Below the range of normal growth temperatures, however, the extent of lipid disorder was always higher in the thylakoid than in the cytoplasmic membranes prepared from the same cells. This difference was attributed to the considerable difference in protein-to-lipid ratio in the two kinds of membranes, as determined from the ratio of the intensities of the protein amide I band and the lipid ester C&z.dbnd6;O vibration. The contributions to the membrane dynamics of an ab ovo present 'structural' lipid disorder due to the protein-lipid interactions and of a thermally induced 'dynamic' lipid disorder could be distinguished. 相似文献
17.
Secondary structure components and properties of the melibiose permease from Escherichia coli: a fourier transform infrared spectroscopy analysis
下载免费PDF全文

The structure of the melibiose permease from Escherichia coli has been investigated by Fourier transform infrared spectroscopy, using the purified transporter either in the solubilized state or reconstituted in E. coli lipids. In both instances, the spectra suggest that the permease secondary structure is dominated by alpha-helical components (up to 50%) and contains beta-structure (20%) and additional components assigned to turns, 3(10) helix, and nonordered structures (30%). Two distinct and strong absorption bands are recorded at 1660 and 1653 cm(-1), i.e., in the usual range of absorption of helices of membrane proteins. Moreover, conditions that preserve the transporter functionality (reconstitution in liposomes or solubilization with dodecyl maltoside) make possible the detection of two separate alpha-helical bands of comparable intensity. In contrast, a single intense band, centered at approximately 1656 cm(-1), is recorded from the inactive permease in Triton X-100, or a merged and broader signal is recorded after the solubilized protein is heated in dodecyl maltoside. It is suggested that in the functional permease, distinct signals at 1660 and 1653 cm(-1) arise from two different populations of alpha-helical domains. Furthermore, the sodium- and/or melibiose-induced changes in amide I line shape, and in particular, in the relative amplitudes of the 1660 and 1653 cm(-1) bands, indicate that the secondary structure is modified during the early step of sugar transport. Finally, the observation that approximately 80% of the backbone amide protons can be exchanged suggests high conformational flexibility and/or a large accessibility of the membrane domains to the aqueous solvent. 相似文献
18.
The position and extent of movement of a charged peptide within a membrane bilayer provides much controversy. In our study, we have examined the nature of the highly charged helix-turn-helix motif (S3b and S4) to address how a highly charged peptide is stabilized within a bilayer in the presence of various transmembrane electrical potentials. Our double-bilayer simulation results show how the variation of the salt concentrations between the inner and outer bath establishes a transmembrane potential. Our results also show that important features of the peptide affected by changes in electrical potential are the center of mass depth, the swivel/kink degrees of conformation, and the hydrogen-bonding patterns. As the voltage gradient across the bilayer increased, the center of mass of the peptide shifted in a direction toward the outer bath. The peptide also has a higher percent helical content and the swivel/kink conformation is more rigid for nonpolarized systems where no voltage drop occurred between salt baths. Our results also provide some suggestions for how this domain may be affected by environmental changes as part of the voltage sensor in a K-channel. 相似文献
19.
Holdbrook DA Leung YM Piggot TJ Marius P Williamson PT Khalid S 《Biochemistry》2010,49(51):10796-10802
The N-terminal domain of fukutin-I has been implicated in the localization of the protein in the endoplasmic reticulum and Golgi Apparatus. It has been proposed to mediate this through its interaction with the thinner lipid bilayers found in these compartments. Here we have employed multiscale molecular dynamics simulations and circular dichroism spectroscopy to explore the structure, stability, and orientation of the short 36-residue N-terminus of fukutin-I (FK1TMD) in lipids with differing tail lengths. Our results show that FK1TMD adopts a stable helical conformation in phosphatidylcholine lipids when oriented with its principal axis perpendicular to the bilayer plane. The stability of the helix is largely insensitive to the lipid tail length, preventing hydrophobic mismatch by virtue of its mobility and ability to tilt within the lipid bilayers. This suggests that changes in FK1TMD tilt in response to bilayer properties may be implicated in the regulation of its trafficking. Coarse-grained simulations of the complex Golgi membrane suggest the N-terminal domain may induce the formation of microdomains in the surrounding membrane through its preferential interaction with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol 4,5-bisphosphate lipids. 相似文献
20.
Unfolding and extraction of a transmembrane alpha-helical peptide: dynamic force spectroscopy and molecular dynamics simulations
下载免费PDF全文

An atomic force microscope (AFM) was used to visualize CWALP(19)23 peptides ((+)H(3)N-ACAGAWWLALALALALALALWWA-COO(-)) inserted in gel-phase DPPC and DSPC bilayers. The peptides assemble in stable linear structures and domains. A model for the organization of the peptides is given from AFM images and a 20 ns molecular dynamics (MD) simulation. Gold-coated AFM cantilevers were used to extract single peptides from the bilayer through covalent bonding to the cystein residue. Experimental and simulated force curves show two distinct force maxima. In the simulations these two maxima correspond to the extraction of the two pairs of tryptophan residues from the membrane. Unfolding of the peptide precedes extraction of the second distal set of tryptophans. To probe the energies involved, AFM force curves were obtained from 10 to 10(4) nm/s and MD force curves were simulated with 10(8)-10(11) nm/s pulling velocities (V). The velocity relationship with the force, F, was fitted to two fluctuation adhesive potential models. The first assumes the pulling produces a constant bias in the potential and predicts an F approximately ln (V) relationship. The second takes into account the ramped bias that the linker feels as it is being driven out of the adhesion complex and scales as F approximately (ln V)2/3. 相似文献