首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ischemic stroke is a critical disease which causes serious neurological functional loss such as paresis. Hope for novel therapies is based on the increasing evidence of the presence of stem cell populations in the central nervous system(CNS) and the development of stem-cell-based therapies for stroke patients. Although mesenchymal stem cells(MSCs) represented initially a promising cell source,only a few transplanted MSCs were present near the injured areas of the CNS.Thus, regional stem cells that are present and/or induced in the CNS may be ideal when considering a treatment following ischemic stroke. In this context, we have recently showed that injury/ischemia-induced neural stem/progenitor cells(i NSPCs) and injury/ischemia-induced multipotent stem cells(i SCs) are present within post-stroke human brains and post-stroke mouse brains. This indicates that i NSPCs/i SCs could be developed for clinical applications treating patients with stroke. The present study introduces the traits of mouse and human i NSPCs,with a focus on the future perspective for CNS regenerative therapies using novel i NSPCs/i SCs.  相似文献   

3.
Viral infections in the prenatal (during pregnancy) and perinatal period have been a common cause of brain malformation. Besides the immediate neurological dysfunctions, virus infections may critically affect CNS development culminating in long-term cognitive deficits. Most of these neurotropic viruses are most damaging at a critical stage of the host, when the brain is in a dynamic stage of development. The neuropathology can be attributed to the massive neuronal loss induced by the virus as well as lack of CNS repair owing to a deficit in the neural stem/progenitor cell (NSPC) pool or aberrant formation of new neurons from NSPCs. Being one of the mitotically active populations in the post natal brain, the NSPCs have emerged as the potential targets of neurotropic viruses. The NSPCs are self-renewing and multipotent cells residing in the neurogenic niches of the brain, and, therefore, hampering the developmental fate of these cells may adversely affect the overall neurogenesis pattern. A number of neurotropic viruses utilize NSPCs as their cellular reservoirs and often establish latent and persistent infection in them. Both HIV and Herpes virus infect NSPCs over long periods of time and reactivation of the virus may occur later in life. The virus infected NSPCs either undergoes cell cycle arrest or impaired neuronal or glial differentiation, all of which leads to impaired neurogenesis. The disturbances in neurogenesis and CNS development following neurotropic virus infections have direct implications in the viral pathogenesis and long-term neurobehavioral outcome in infected individuals.  相似文献   

4.
Traumatic injury to the central nervous system (CNS) is highly debilitating, with the clinical need for regenerative therapies apparent. Neural stem/progenitor cells (NSPCs) are promising because they can repopulate lost or damaged cells and tissues. However, the adult CNS does not provide an optimal milieu for exogenous NSPCs to survive, engraft, differentiate, and integrate with host tissues. This review provides an overview of tissue engineering strategies to improve stem cell therapies by providing a defined microenvironment during transplantation. The use of biomaterials for physical support, growth factor delivery, and cellular co-transplantation are discussed. Providing the proper environment for stem cell survival and host tissue integration is crucial in realizing the full potential of these cells in CNS repair strategies.  相似文献   

5.
Neural stem/progenitor cells (NSPCs) proliferate and differentiate depending on their intrinsic properties and local environment. During the development of the mammalian nervous system, NSPCs generate neurons and glia sequentially. However, little is known about the mechanism that determines the timing of switch from neurogenesis to gliogenesis. In this study, we established a culture system in which the neurogenic potential of NSPCs is decreased in a time-dependent manner, so that short-term-cultured NSPCs differentiate into more neurons compared with long-term-cultured NSPCs. We found that short-term-cultured NSPCs express high levels of integrin-associated protein form 2 (IAP2; so-called CD47) mRNA using differential display analysis. Moreover, IAP2 overexpression in NSPCs induced neuronal differentiation of NSPCs. These findings reveal a novel mechanism by which IAP2 induces neuronal differentiation of NSPCs.  相似文献   

6.
Our recent studies demonstrated that mature astrocytes from spinal cord can be reprogrammed in vitro and in vivo to generate neural stem/progenitor cells (NSPCs) following treatment with conditioned medium collected from mechanically injured astrocytes. However, little is known regarding the molecular mechanisms underlying the reprogramming of astrocytes. Here, we show that fibroblast growth factor 4 (FGF4) exerts a critical role in synergistically converting astrocytes into NSPCs that can express multiple neural stem cell markers (nestin and CD133) and are capable of both self-renewal and differentiation into neurons and glia. Lack of FGF4 signals fails to elicit the dedifferentiation of astrocytes towards NSPCs, displaying a substantially lower efficiency in the reprogramming of astrocytes and a slower transition through fate-determined state. These astrocyte-derived NSPCs displayed relatively poor self-renewal and multipotency. More importantly, further investigation suggested that FGF4 is a key molecule necessary for activating PI3K/Akt/p21 signaling cascades, as well as their downstream effectors responsible for directing cell reprogramming towards NSPCs. Collectively, these findings provide a molecular basis for astrocyte dedifferentiation into NSPCs after central nervous system (CNS) injury and imply that FGF4 may be a clinically applicable molecule for in situ neural repair in the CNS disorders.  相似文献   

7.
Neural stem/progenitor cells (NSPCs) are the stem cell of the adult central nervous system (CNS). These cells are able to differentiate into the major cell types found in the CNS (neurons, oligodendrocytes, astrocytes), thus NSPCs are the mechanism by which the adult CNS could potentially regenerate after injury or disorder. Microenviromental factors are critical for guiding NSPC differentiation and are thus important for neural tissue engineering. In this study, D-mannitol crystals were mixed with photocrosslinkable methacrylamide chitosan (MAC) as a porogen to enhance pore size during hydrogel formation. D-mannitol was admixed to MAC at 5, 10 and 20 wt% D-mannitol per total initial hydrogel weight. D-mannitol crystals were observed to dissolve and leave the scaffold within 1 hr. Quantification of resulting average pore sizes showed that D-mannitol addition resulted in larger average pore size (5 wt%, 4060±160 µm2, 10 wt%, 6330±1160 µm2, 20 wt%, 7600±1550 µm2) compared with controls (0 wt%, 3150±220 µm2). Oxygen diffusion studies demonstrated that larger average pore area resulted in enhanced oxygen diffusion through scaffolds. Finally, the differentiation responses of NSPCs to phenotypic differentiation conditions were studied for neurons, astrocytes and oligodendrocytes in hydrogels of varied porosity over 14 d. Quantification of total cell numbers at day 7 and 14, showed that cell numbers decreased with increased porosity and over the length of the culture. At day 14 immunohistochemistry quantification for primary cell types demonstrated significant differentiation to the desired cells types, and that total percentages of each cell type was greatest when scaffolds were more porous. These results suggest that larger pore sizes in MAC hydrogels effectively promote NSPC 3D differentiation.  相似文献   

8.
The enteric nervous system (ENS) has to respond to continuously changing microenvironmental challenges within the gut and is therefore dependent on a neural stem cell niche to keep the ENS functional throughout life. In this study, we hypothesize that this stem cell niche is also affected during inflammation and therefore investigated lipopolysaccharides (LPS) effects on enteric neural stem/progenitor cells (NSPCs). NSPCs were derived from the ENS and cultured under the influence of different LPS concentrations. LPS effects upon proliferation and differentiation of enteric NSPC cultures were assessed using immunochemistry, flow cytometry, western blot, Multiplex ELISA and real‐time PCR. LPS enhances the proliferation of enteric NSPCs in a dose‐dependent manner. It delays and modifies the differentiation of these cells. The expression of the LPS receptor toll‐like receptor 4 on NSPCs could be demonstrated. Moreover, LPS induces the secretion of several cytokines. Flow cytometry data gives evidence for individual subgroups within the NSPC population. ENS‐derived NSPCs respond to LPS in maintaining at least partially their stem cell character. In the case of inflammatory disease or trauma where the liberation and exposure to LPS will be increased, the expansion of NSPCs could be a first step towards regeneration of the ENS. The reduced and altered differentiation, as well as the induction of cytokine signalling, demonstrates that the stem cell niche may take part in the LPS‐transmitted inflammatory processes in a direct and defined way.  相似文献   

9.
Extracellular matrix (ECM) molecules constitute a "niche" that modulates the migration, proliferation, and differentiation of neural stem/progenitor cells (NSPCs). The glycoprotein Tenascin-R (TN-R) is an ECM molecule, comprising multiple domains. Either the whole TN-R molecule or its distinct domains has been demonstrated to play a very important role in the developing central nervous system. However, little is known about the effect of the TN-R domain on NSPCs, especially NSPC migration. In the present study, we first show that both TN-R domains epidermal growth factor-like repeat (EGFL) and fibronectin type III (FN)6-8 can inhibit the NSPCs migration from neurospheres in vitro. Furthermore, both the EGFL and FN6-8 domains affect the distribution of neurons generated from neurospheres, indicating that EGFL and FN6-8 domains inhibit the motility of neurons generated from neurospheres. These results suggest that TN-R has an inhibitory effect on NSPCs migration.  相似文献   

10.
Kim H  Zahir T  Tator CH  Shoichet MS 《PloS one》2011,6(6):e21744
Neural stem/progenitor cells (NSPCs) have great potential as a cell replacement therapy for spinal cord injury. However, poor control over transplant cell differentiation and survival remain major obstacles. In this study, we asked whether dibutyryl cyclic-AMP (dbcAMP), which was shown to induce up to 85% in vitro differentiation of NSPCs into neurons would enhance survival of transplanted NSPCs through prolonged exposure either in vitro or in vivo through the controlled release of dbcAMP encapsulated within poly(lactic-co-glycolic acid) (PLGA) microspheres and embedded within chitosan guidance channels. NSPCs, seeded in fibrin scaffolds within the channels, differentiated in vitro to betaIII-tubulin positive neurons by immunostaining and mRNA expression, in response to dbcAMP released from PLGA microspheres. After transplantation in spinal cord injured rats, the survival and differentiation of NSPCs was evaluated. Untreated NSPCs, NSPCs transplanted with dbcAMP-releasing microspheres, and NSPCs pre-differentiated with dbcAMP for 4 days in vitro were transplanted after rat spinal cord transection and assessed 2 and 6 weeks later. Interestingly, NSPC survival was highest in the dbcAMP pre-treated group, having approximately 80% survival at both time points, which is remarkable given that stem cell transplantation often results in less than 1% survival at similar times. Importantly, dbcAMP pre-treatment also resulted in the greatest number of in vivo NSPCs differentiated into neurons (37±4%), followed by dbcAMP-microsphere treated NSPCs (27±14%) and untreated NSPCs (15±7%). The reverse trend was observed for NSPC-derived oligodendrocytes and astrocytes, with these populations being highest in untreated NSPCs. This combination strategy of stem cell-loaded chitosan channels implanted in a fully transected spinal cord resulted in extensive axonal regeneration into the injury site, with improved functional recovery after 6 weeks in animals implanted with pre-differentiated stem cells in chitosan channels.  相似文献   

11.
In vertebrates, neural stem/progenitor cells (NSPCs) maintenance is critical for nervous system development and homeostasis. However, the molecular mechanisms underlying the maintenance of NSPCs have not been fully elucidated. Here, we demonstrated that zebrafish ZDHHC16, a DHHC encoding protein, which was related to protein palmitoylation after translation, was expressed in the developing forebrain, and especially in the telencephalon. Loss‐ and gain‐of‐function studies showed that ZDHHC16 played a crucial role in the regualtion of NSPCs proliferation during zebrafish telencephalic development, via a mechanism dependent on its palmitoyltransferase activity. Further analyses showed that the inhibition of ZDHHC16 led to inactivation of the FGF/ERK signaling pathway during telencephalic NSPCs proliferation and maintenance. Taken together, our results suggest that ZDHHC16 activity is essential for early NSPCs proliferation where it acts to activate the FGF/ERK network, allowing for the initiation of proliferation –regulated gene expression programs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1014–1028, 2016  相似文献   

12.
Adult rat and human spinal cord neural stem/progenitor cells (NSPCs) cultured in growth factor-enriched medium allows for the proliferation of multipotent, self-renewing, and expandable neural stem cells. In serum conditions, these multipotent NSPCs will differentiate, generating neurons, astrocytes, and oligodendrocytes. The harvested tissue is enzymatically dissociated in a papain-EDTA solution and then mechanically dissociated and separated through a discontinuous density gradient to yield a single cell suspension which is plated in neurobasal medium supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and heparin. Adult rat spinal cord NSPCs are cultured as free-floating neurospheres and adult human spinal cord NSPCs are grown as adherent cultures. Under these conditions, adult spinal cord NSPCs proliferate, express markers of precursor cells, and can be continuously expanded upon passage. These cells can be studied in vitro in response to various stimuli, and exogenous factors may be used to promote lineage restriction to examine neural stem cell differentiation. Multipotent NSPCs or their progeny can also be transplanted into various animal models to assess regenerative repair.  相似文献   

13.
Ketamine is widely used as an anesthetic, analgesic, or sedative in pediatric patients. We reported that ketamine alters the normal neurogenesis of rat fetal neural stem progenitor cells (NSPCs) in the developing brain, but the underlying mechanisms remain unknown. The PI3K‐PKB/Akt (phosphatidylinositide 3‐kinase/protein kinase B) signaling pathway plays many important roles in cell survival, apoptosis, and proliferation. We hypothesized that PI3K‐PKB/Akt signaling may be involved in ketamine‐altered neurogenesis of cultured NSPCs in vitro. NSPCs were isolated from Sprague‐Dawley rat fetuses on gestational day 17. 5‐bromo‐2′‐deoxyuridine (BrdU) incorporation, Ki67 staining, and differentiation tests were utilized to identify primary cultured NSPCs. Immunofluorescent staining was used to detect Akt expression, whereas Western blots measured phosphorylated Akt and p27 expression in NSPCs exposed to different treatments. We report that cultured NSPCs had properties of neurogenesis: proliferation and neural differentiation. PKB/Akt was expressed in cultured rat fetal cortical NSPCs. Ketamine inhibited the phosphorylation of Akt and further enhanced p27 expression in cultured NSPCs. All ketamine‐induced PI3K/Akt signaling changes could be recovered by N‐methyl‐d ‐aspartate (NMDA) receptor agonist, NMDA. These data suggest that the inhibition of PI3K/Akt‐p27 signaling may be involved in ketamine‐induced neurotoxicity in the developing brain, whereas excitatory NMDA receptor activation may reverse these effects  相似文献   

14.

Background

The low immunogenicity of neural stem/progenitor cells (NSPCs) coupled with negligible expression of MHC antigens has popularized their use in transplantation medicine. However, in an inflammatory environment, the NSPCs express costimulatory molecules and MHC antigens, and also exhibit certain immunomodulatory functions. Since NSPCs are the cellular targets in a number of virus infections both during postnatal and adult stages, we wanted to investigate the immunological properties of these stem cells in response to viral pathogen.

Methodology/Principal Findings

We utilized both in vivo mouse model and in vitro neurosphere model of Japanese encephalitis virus (JEV) infection for the study. The NSPCs residing in the subventricular zone of the infected brains showed prominent expression of MHC-I and costimulatory molecules CD40, CD80, and CD86. Using Flow cytometry and fluorescence microscopy, we observed increased surface expression of co-stimulatory molecule and MHC class I antigen in NSPCs upon progressive JEV infection in vitro. Moreover, significant production of pro-inflammatory cyto/chemokines was detected in JEV infected NSPCs by Cytokine Bead Array analysis. Interestingly, NSPCs were capable of providing functional costimulation to allogenic T cells and JEV infection resulted in increased proliferation of allogenic T cells, as detected by Mixed Lymphocyte reaction and CFSE experiments. We also report IL-2 production by NSPCs upon JEV infection, which possibly provides mitogenic signals to T cells and trigger their proliferation.

Conclusion/Significance

The in vivo and in vitro findings clearly indicate the development of immunogenicity in NSPCs following progressive JEV infection, in our case, JEV infection. Following a neurotropic virus infection, NSPCs possibly behave as immunogenic cells and contribute to both the innate and adaptive immune axes. The newly discovered immunological properties of NSPCs may have implications in assigning a new role of these cells as non-professional antigen presenting cells in the central nervous system.  相似文献   

15.
This study characterized the differentiation of neural stem/precursor cells (NSPCs) isolated from different levels of the spinal cord (cervical vs lumbar cord) and different regions along the neuraxis (brain vs cervical spinal cord) of adult male Wistar enhanced green fluorescent protein rats. The differentiation of cervical spinal cord NSPCs was further examined after variation of time in culture, addition of growth factors, and changes in cell matrix and serum concentration. Brain NSPCs did not differ from cervical cord NSPCs in the percentages of neurons, astrocytes, or oligodendrocytes but produced 26.9% less radial glia. Lumbar cord NSPCs produced 30.8% fewer radial glia and 6.9% more neurons compared with cervical cord NSPCs. Spinal cord NSPC differentiation was amenable to manipulation by growth factors and changes in in vitro conditions. This is the first study to directly compare the effect of growth factors, culturing time, serum concentration, and cell matrix on rat spinal cord NSPCs isolated, propagated, and differentiated under identical conditions. (J Histochem Cytochem 57:405–423, 2009)  相似文献   

16.
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease and a worldwide health challenge. Different therapeutic approaches are being developed to reverse or slow the loss of affected neurons. Another plausible therapeutic way that may complement the studies is to increase the survival of existing neurons by mobilizing the existing neural stem/progenitor cells (NSPCs) — i.e. “induce their plasticity” — to regenerate lost neurons despite the existing pathology and unfavorable environment. However, there is controversy about how NSPCs are affected by the unfavorable toxic environment during AD. In this review, we will discuss the use of stem cells in neurodegenerative diseases and in particular how NSPCs affect the AD pathology and how neurodegeneration affects NSPCs. In the end of this review, we will discuss how zebrafish as a useful model organism with extensive regenerative ability in the brain might help to address the molecular programs needed for NSPCs to respond to neurodegeneration by enhanced neurogenesis.  相似文献   

17.
18.
The failure of adult hippocampal neurogenesis is increasingly considered as an important factor in the pathological correlates for memory decline in Alzheimer''s disease (AD). Loss of adult-born neurons and abnormalities of neural stem/progenitor cells (NSPCs) within the dentate gyrus (DG) of adult hippocampus might contribute to this process. In this study, we showed that amyloid-β1–42 (Aβ42) oligomer triggers senescent phenotype of NSPCs in vitro. Oligomerized Aβ42 induced the production of senescence-associated biomarkers p16 and senescence-associated β-galactosidase (SA-β-gal) in adult mouse hippocampal NSPCs, as well as inhibited cells proliferation and differentiation. In the DG of amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice, the number of senescent NSPCs was significantly increased and senescence-associated protein p16 was upregulated. Formylpeptide receptor 2 (FPR2), one of Aβ42 functional receptors, may be involved in NSPCs senescence. The FPR2 antagonist WRW4 significantly inhibited NSPCs senescence induced by Aβ42. In addition, the activation of p38 mitogen-activated protein kinase (MAPK) in response to the accumulation of reactive oxygen species (ROS) was involved in NSPCs senescence induced by Aβ42. WRW4 inhibited the accumulation of ROS and the activation of p38 MAPK in NSPCs. Our data suggest that Aβ42 accelerates NSPCs senescence via FPR2-dependent activation of its downstream ROS-p38 MAPK signaling, which limits the function of NSPCs and contributes to failure of neurogenesis. This is the first demonstration of NSPCs senescence response to Aβ42.  相似文献   

19.
Neural stem/progenitor cells (NSPCs) are multipotent cells within the embryonic and adult brain that give rise to both neuronal and glial cell lineages. Maintenance of NSPC multipotency is promoted by low oxygen tension, although the metabolic underpinnings of this trait have not been described. In this study, we investigated the metabolic state of undifferentiated NSPCs in culture, and tested their relative reliance on oxidative versus glycolytic metabolism for survival, as well as their dependence on hypoxia inducible factor‐1alpha (HIF‐1α) expression for maintenance of metabolic phenotype. Unlike primary neurons, NSPCs from embryonic and adult mice survived prolonged hypoxia in culture. In addition, NSPCs displayed greater susceptibility to glycolytic inhibition compared with primary neurons, even in the presence of alternative mitochondrial TCA substrates. NSPCs were also more resistant than neurons to mitochondrial cyanide toxicity, less capable of utilizing galactose as an alternative substrate to glucose, and more susceptible to pharmacological inhibition of the pentose phosphate pathway by 6‐aminonicotinamide. Inducible deletion of exon 1 of the Hif1a gene improved the ability of NSPCs to utilize pyruvate during glycolytic inhibition, but did not alter other parameters of metabolism, including their ability to withstand prolonged hypoxia. Taken together, these data indicate that NSPCs have a relatively low requirement for oxidative metabolism for their survival and that hypoxic resistance is not dependent upon HIF‐1α signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号