首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human apical sodium-dependent bile acid transporter (ASBT) is a validated drug target and can be employed to increase oral bioavailability of various drug conjugates. The aim of the present study was to investigate the chemical space around the 24-position of bile acids that influences both inhibition and uptake by the transporter. A series of 27 aminopyridine and aminophenol conjugates of glutamyl-chenodeoxycholate were synthesized and their ASBT inhibition and transport kinetics (parametrized as K(i), K(t), and J(max)) measured using stably transfected ASBT-MDCK cells. All conjugates were potent ASBT inhibitors. Monoanionic conjugates exhibited higher inhibition potency than neutral conjugates. However, neutral conjugates and chloro-substituted monoanionic conjugates were not substrates, or at least not apparent substrates. Kinetic analysis of substrates indicated that similar values for K(i) and K(t) implicate substrate binding to ASBT as the rate-limiting step. Using 3D-QSAR, four inhibition models and one transport efficiency model were developed. Steric fields dominated in CoMFA models, whereas hydrophobic fields dominated CoMSIA models. The inhibition models showed that a hydrophobic or bulky substitute on the 2 or 6 position of a 3-aminopyridine ring enhanced activity, while a hydrophobic group on the 5 position was detrimental. Overall, steric and hydrophobic features around the 24 position of the sterol nucleus strongly influenced bile acid conjugate interaction with ASBT. The relative location of the pyridine nitrogen and substituent groups also modulated binding.  相似文献   

2.
This paper describes the derivation of a bile salt monomeric hydrophobicity index that quantitatively defines the composite hydrophilic-hydrophobic balance of a mixture of bile salts. The index is based on the logarithms of bile salt capacity factors determined using reversed phase high performance liquid chromatography (HPLC) (stationary phase octadecyl silane; mobile phase methanol-water 70:30 w/w, ionic strength 0.15). It has been standardized arbitrarily to set indices of taurocholate and taurolithocholate to 0 and 1, respectively. Indices of tauroursodeoxycholate, taurohyodeoxycholate, taurochenodeoxycholate, and taurodeoxycholate were found to be -0.47, -0.35, +0.46, and +0.59, respectively. Whereas capacity factors and hydrophobicity indices of taurine-conjugated bile salts were constant for pH 2.8-9.0, the hydrophilic-hydrophobic balance of glycine-conjugated and unconjugated bile salts was strongly influenced by pH. At alkaline pH (greater than 8.5), hydrophobicity indices of fully ionized unconjugated (n = 4) and glycine-conjugated (n = 6) bile salts differed by only 0.14 +/- 0.02 and 0.05 +/- 0.01, respectively, from those of the corresponding taurine conjugates. At acid pH (less than 3.5) the hydrophobicity indices of four unconjugated bile acids (protonated form) exceeded those of the corresponding salts (ionized form) by 0.76 +/- 0.04; indices of six glycine-conjugated bile acids exceeded those of the corresponding salts by only 0.26 +/- 0.03. Capacity factors of the salt forms of cholate and its conjugates increased dramatically with increasing ionic strength of the mobile phase; retention of the protonated forms (cholic and glycocholic acids) was only minimally influenced by ionic strength. Thus the difference in hydrophilic-hydrophobic balance between a bile acid and its corresponding salt decreases with increasing ionic strength. Examples are given of calculation of hydrophobicity indices for biliary bile salts (fully ionized) from four species under conditions of intact enterohepatic circulation. Mean values, from least to most hydrophobic, were: rat (-0.31) less than dog (0.11) less than hamster (0.22) less than human (0.32). This study provides a rational basis for calculating the hydrophilic-hydrophobic balance of mixed bile salt solutions over a broad range of pH.  相似文献   

3.
Urease (EC 3.5.1.5) serves as a virulence factor in pathogens that are responsible for the development of many diseases in humans and animals. Urease allows soil microorganisms to use urea as a source of nitrogen and aid in the rapid break down of urea-based fertilizers resulting in phytopathicity. It has been well established that hydroxamic acids are the potent inhibitors of urease activity. The 3D-QSAR studies on thirty five hydroxamic acid derivatives as known urease inhibitors were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The CoMFA model produced statistically significant results with cross-validated (q(2)) 0.532 and conventional (r(2)) correlation coefficients 0.969.The model indicated that the steric field (70.0%) has greater influence on hydroxamic acid inhibitors than the electrostatic field (30.0%). Furthermore, five different fields: steric, electrostatic, hydrophobic, H-bond donor and H-bond acceptor assumed to generate the CoMSIA model, which gave q(2) 0.665 and r(2) 0.976.This model showed that steric (43.0%), electrostatic (26.4%) and hydrophobic (20.3%) properties played a major role in urease inhibition. The analysis of CoMFA and CoMSIA contour maps provided insight into the possible modification of the hydroxamic acid derivatives for improved activity.  相似文献   

4.
Comparative molecular field analysis (CoMFA) was applied to 6-substituted benzopyran-4-carbothioamide potassium channel openers 1. CoMFA suggested that the electrostatic, steric, and hydrophobic factors of the 6-substituent were correlated with the vasorelaxant activity, among which the contribution of electrostatic factor was the most important.

Comparative molecular field analysis (CoMFA) was applied to 6-substituted benzopyran-4-cabothioamide potassium channel openers 1. CoMFA suggested that the electrostatic, steric, and hydrophobic factors of the 6-substituents were correlated with the vasorelaxant activity.  相似文献   


5.
We explored the influence of the hydrophilic-hydrophobic balance of a series of natural bile acids on cholesterol absorption in the mouse. Male C57L/J mice were fed standard chow or chow supplemented with 0.5% cholic; chenodeoxycholic; deoxycholic; dehydrocholic; hyocholic; hyodeoxycholic; alpha-, beta-, or omega-muricholic; ursocholic; or ursodeoxycholic acids for 7 days. Biliary bile salts were measured by reverse-phase HPLC, and hydrophobicity indices were estimated by Heuman's method. Cholesterol absorption efficiency was determined by a plasma dual-isotope ratio method. In mice fed chow, natural proportions of tauro-beta-muricholate (42 +/- 6%) and taurocholate (50 +/- 7%) with a hydrophobicity index of -0.35 +/- 0.04 produced cholesterol absorption of 37 +/- 5%. Because bacterial and especially hepatic biotransformations of specific bile acids occurred, hydrophobicity indices of the resultant bile salt pools differed from fed bile acids. We observed a significant positive correlation between hydrophobicity indices of the bile salt pool and percent cholesterol absorption. The principal mechanism whereby hydrophilic bile acids inhibit cholesterol absorption appears to be diminution of intraluminal micellar cholesterol solubilization. Gene expression of intestinal sterol efflux transporters Abcg5 and Abcg8 was upregulated by feeding cholic acid but not by hydrophilic beta-muricholic acid nor by hydrophobic deoxycholic acid. We conclude that the hydrophobicity of the bile salt pool predicts the effects of individual fed bile acids on intestinal cholesterol absorption. Natural alpha- and beta-muricholic acids are the most powerful inhibitors of cholesterol absorption in mice and might act as potent cholesterol-lowering agents for prevention of cholesterol deposition diseases in humans.  相似文献   

6.
7.
Hydrophobic bile acids impair gallbladder emptying in vivo and inhibit gallbladder muscle contraction in response to CCK-8 in vitro. This study was aimed at determining the mechanisms of muscle cell dysfunction caused by bile acids in guinea pig gallbladders. Muscle cells were obtained by enzymatic digestion. Taurochenodeoxycholic acid (TCDC), a hydrophobic bile acid, caused a contraction of up to 15% and blocked CCK-induced contraction. Indomethacin abolished the TCDC-induced contraction. Hydrophilic bile acid tauroursodeoxycholic acid (TUDC) had no effect on muscle contraction but prevented the TCDC-induced contraction and its inhibition on CCK-induced contraction. Pretreatment with NADPH oxidase inhibitor PH2I, xanthine oxidase inhibitor allopurinol, and free-radical scavenger catalase also prevented TCDC-induced contraction and its inhibition of the CCK-induced contraction. TCDC caused H2O2 production, lipid peroxidation, and increased PGE2 synthesis and activities of catalase and SOD. These changes were significantly inhibited by pretreatment of PH2I or allopurinol. Inhibitors of cytosolic phospholipase A2 (cPLA2), protein kinase C (PKC), and mitogen-activating protein kinase (MAPK) also blocked the TCDC-induced contraction. It is concluded that hydrophobic bile acids cause muscle cell dysfunction by stimulating the formation of H2O2 via activation of NADPH and xanthine oxidase. H2O2 causes lipid peroxidation and activates cPLA2 to increase PGE2 production, which, in turn, stimulates the synthesis of free-radical scavengers through the PKC-MAPK pathway.  相似文献   

8.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (78 compounds) of 2, 4-diamino-5-methyl-5-deazapteridine (DMDP) derivatives as potent anticancer agents. The best prediction were obtained with a CoMFA standard model (q(2) = 0.530, r(2) = 0.903) and with CoMSIA combined steric, electrostatic, hydrophobic and hydrogen bond donor fields (q(2) = 0.548, r(2) = 0.909). Both models were validated by a test set of ten compounds producing very good predictive r(2) values of 0.935 and 0.842, respectively. CoMFA and CoMSIA contour maps were then used to analyze the structural features of ligands to account for the activity in terms of positively contributing physiochemical properties such as steric, electrostatic, hydrophobic and hydrogen bond donor fields. The resulting contour maps produced by the best CoMFA and CoMSIA models were used to identify the structural features relevant to the biological activity in this series of analogs. This study suggests that the highly electropositive substituents with low steric tolerance are required at 5 position of the pteridine ring and bulky electronegatve substituents are required at the meta-position of the phenyl ring. The information obtained from CoMFA and CoMSIA 3-D contour maps can be used for the design of deazapteridine-based analogs as anticancer agents.  相似文献   

9.
The aim of this study was to analyse the Raman and infrared spectra of eight common mammalian bile acids in order to identify intermolecular interactions between hydroxyl and carbonyl groups. The results are considered in the light of the new hydrophilic/hydrophobic classification of bile acids. The alcohol OH group of the hydrophobic bile acids forms different intermolecular bonds. The most hydrophobic bile acid, lithocholic acid forms polymers, and this may explain its very low water solubility. The hydrophilic bile acids have some of their alcohol OH groups free of any intermolecular interaction. The strongly hydrophilic murideoxycholic acid also forms dimers, again consistent with a very low water solubility. The proposed structural arrangements are in agreement with published crystallographic studies. Received: 7 November 1996 / Accepted: 8 December 1996  相似文献   

10.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (44 compounds) of diaryloxy-methano-phenanthrene derivatives as potent antitubercular agents. The best predictions were obtained with a CoMFA standard model (q (2)=0.625, r (2)=0.994) and with CoMSIA combined steric, electrostatic, and hydrophobic fields (q (2)=0.486, r (2)=0.986). Both models were validated by a test set of seven compounds and gave satisfactory predictive r (2) values of 0.999 and 0.745, respectively. CoMFA and CoMSIA contour maps were used to analyze the structural features of the ligands to account for the activity in terms of positively contributing physicochemical properties: steric, electrostatic, and hydrophobic fields. The information obtained from CoMFA and CoMSIA 3-D contour maps can be used for further design of phenanthrene-based analogs as anti-TB agents. The resulting contour maps, produced by the best CoMFA and CoMSIA models, were used to identify the structural features relevant to the biological activity in this series of analogs. Further analysis of these interaction-field contour maps also showed a high level of internal consistency. This study suggests that introduction of bulky and highly electronegative groups on the basic amino side chain along with decreasing steric bulk and electronegativity on the phenanthrene ring might be suitable for designing better antitubercular agents.  相似文献   

11.
胆汁酸作为一种信号分子通过激活肝、肠道和外周组织中的胆汁酸受体影响体内葡萄糖和脂质的代谢平衡,对于调节肥胖、2型糖尿病和非酒精性脂肪肝等代谢性疾病具有非常重要的意义。胆汁酸与相应核受体,如法尼醇X受体(farnesoid X receptor, FXR)和Takeda G蛋白偶联受体5 (Takeda G protein-coupled receptor 5,TGR5)的相互作用影响了这些代谢性疾病。FXR主要通过影响胆汁酸的合成及转运对非酒精性脂肪肝发挥作用,TGR5则是间接增加褐色脂肪组织中的生热作用,改善肥胖和2型糖尿病。这些调控机制的研究是非常必要的。本文综述了胆汁酸代谢及其对代谢性疾病调控的分子机制的研究进展,以期为科研工作者提供一定的参考。  相似文献   

12.
Hydrophobic bile acids but not hydrophilic bile acids induce apoptosis in HCT116 cells. We expressed sodium-dependent bile acid transporters in HCT116 cells, and the intracellular concentration of hydrophilic bile acids increased to that of the hydrophobic bile acids. But no sign of apoptosis was observed, which suggests a hydrophobic-bile acid-specific mechanism for the induction of apoptosis in HCT116 cells.  相似文献   

13.
Phospholipase A(2) plays a role in cholesterol gallstone formation by hydrolyzing bile phospholipids into lysolecithin and free fatty acids. This study investigated its effects on cholesterol crystallization in model bile systems. Supersaturated model bile solutions with different cholesterol saturation indexes (1.2, 1.4, and 1.6) were prepared using cholesterol, taurocholate, and egg yolk phosphatidylcholine, soybean phosphatidylcholine, palmitoyl-oleoyl phosphatidylcholine, or palmitoyl-linoleoyl phosphatidylcholine. Then the effect of digestion of phosphatidylcholine by phospholipase A(2) on bile metastability was assessed by spectrophotometry and video-enhanced differential contrast microscopy. Addition of phospholipase A(2) caused the release of free fatty acids in a time-dependent manner. Cholesterol crystallization was enhanced by an increased crystal growth rate in model bile containing hydrophilic species such as soybean or palmitoyl-linoleoyl phosphatidylcholine, consisting predominantly of polyunsaturated fatty acids. Because phospholipase A(2) enhanced cholesterol crystallization in bile containing hydrophilic phosphatidylcholine species, but not hydrophobic phosphatidylcholine species, release of polyunsaturated fatty acids by hydrolysis may be responsible for such enhancement. Therefore, the role of phospholipase A(2) in cholesterol gallstone formation depends on the phospholipid species present in bile, so that phospholipid species selection during hepatic excretion is, in part, crucial to the cholesterol stone formation.  相似文献   

14.
Urease (EC 3.5.1.5) serves as a virulence factor in pathogens that are responsible for the development of many diseases in humans and animals. Urease allows soil microorganisms to use urea as a source of nitrogen and aid in the rapid break down of urea-based fertilizers resulting in phytopathiCIT000y. It has been well established that hydroxamic acids are the potent inhibitors of urease activity. The 3D-QSAR studies on thirty five hydroxamic acid derivatives as known urease inhibitors were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The CoMFA model produced statistically significant results with cross-validated (q2) 0.532 and conventional (r2) correlation coefficients 0.969.The model indicated that the steric field (70.0%) has greater influence on hydroxamic acid inhibitors than the electrostatic field (30.0%). Furthermore, five different fields: steric, electrostatic, hydrophobic, H-bond donor and H-bond acceptor assumed to generate the CoMSIA model, which gave q2 0.665 and r2 0.976.This model showed that steric (43.0%), electrostatic (26.4%) and hydrophobic (20.3%) properties played a major role in urease inhibition. The analysis of CoMFA and CoMSIA contour maps provided insight into the possible modification of the hydroxamic acid derivatives for improved activity.  相似文献   

15.
Hydrophobic bile acids but not hydrophilic bile acids induce apoptosis in HCT116 cells. We expressed sodium-dependent bile acid transporters in HCT116 cells, and the intracellular concentration of hydrophilic bile acids increased to that of the hydrophobic bile acids. But no sign of apoptosis was observed, which suggests a hydrophobic-bile acid-specific mechanism for the induction of apoptosis in HCT116 cells.  相似文献   

16.
17.
The effects of 10 differently structured bile acids on bile flow and composition were studied in anesthetized, bile duct-cannulated guinea pigs. At the infusion rates of 2 and 4 mumole/min/kg, all bile acids produced choleresis. The most potent was chenodeoxycholate, which increased bile flow by an average of 31.25 microliters/mumole of bile acids excreted in bile. The weakest choleretic was tauroursodeoxycholate (11.02 mu/mumole). When the choleretic activity was plotted against bile acid hydrophobicity (high-performance liquid chromatography retention factor, obtained from the literature), linearity was observed with similarly conjugated bile acids. The order of potency was deoxycholate greater than chenodeoxycholate greater than cholate greater than ursodeoxycholate, both for the glycine and taurine conjugates, and for the unconjugated bile acids as well. Conjugation was also important, and the rank ordering for the choleretic activity (unconjugated bile acids greater than glycine-conjugates greater than taurine-conjugates) was the same as that for the hydrophobicity. When the choleretic activity was plotted against bile acid micellar aggregation number (in 0.15 M NaCl at 36 degrees C, obtained from the literature), a linear, direct relationship was observed. All bile acids produced similar effects on bile electrolyte concentrations: both bicarbonate and chloride slightly declined during choleresis, whereas bile acid concentrations increased. These studies suggest that, in the guinea pig the differing choleretic activities of differently structured bile acids are not due to their forming micelles in bile of different sizes; either the more hydrophobic bile acids form vesicles, whereas the more hydrophilic form micelles; or bile acids produce choleresis, in part or exclusively, by stimulating an additional secretory mechanism, possibly an inorganic ion pump; or both.  相似文献   

18.
The 3D quantitative structure-activity relationships of 31 quinoline nuclei containing compounds and their biological activity have been investigated to establish various models. The comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies resulted in reliable and significant computational models. The obtained CoMFA model showed high predictive ability with q(2) = 0.592, r(2) = 0.966 and standard error of estimation (SEE) = 0.167, explaining majority of the variance in the data with two principal components. Predictions obtained with CoMSIA steric, electrostatic, hydrophobic, hydrogen-bond acceptor and donor fields (q(2) = 0.533, r(2) = 0.985) showed high prediction ability with minimum SEE (0.111) and four principal components. The information obtained from the CoMFA and CoMSIA contour maps can be utilized for the design and development of topoisomerase-II inhibitors for synthesis.  相似文献   

19.
20.
A 3D-QSAR investigation of 95 diaminobenzophenone yeast farnesyltransferase (FT) inhibitors selected from the work of Schlitzer et al. showed that steric, electrostatic, and hydrophobic properties play key roles in the bioactivity of the series. A CoMFA/CoMSIA combined model using the steric and electrostatic fields of CoMFA together with the hydrophobic field of CoMSIA showed significant improvement in prediction compared with the CoMFA steric and electrostatic fields model. The similarity of the 3D-QSAR field maps for yeast FT inhibition activity (from this work) and for antimalarial activity data (from previous work) and the correlation between those activities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号