首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryo-electron microscopy (cryo-EM), combined with image processing, is an increasingly powerful tool for structure determination of macromolecular protein complexes and assemblies. In fact, single particle electron microscopy1 and two-dimensional (2D) electron crystallography2 have become relatively routine methodologies and a large number of structures have been solved using these methods. At the same time, image processing and three-dimensional (3D) reconstruction of helical objects has rapidly developed, especially, the iterative helical real-space reconstruction (IHRSR) method3, which uses single particle analysis tools in conjunction with helical symmetry. Many biological entities function in filamentous or helical forms, including actin filaments4, microtubules5, amyloid fibers6, tobacco mosaic viruses7, and bacteria flagella8, and, because a 3D density map of a helical entity can be attained from a single projection image, compared to the many images required for 3D reconstruction of a non-helical object, with the IHRSR method, structural analysis of such flexible and disordered helical assemblies is now attainable.In this video article, we provide detailed protocols for obtaining a 3D density map of a helical protein assembly (HIV-1 capsid9 is our example), including protocols for cryo-EM specimen preparation, low dose data collection by cryo-EM, indexing of helical diffraction patterns, and image processing and 3D reconstruction using IHRSR. Compared to other techniques, cryo-EM offers optimal specimen preservation under near native conditions. Samples are embedded in a thin layer of vitreous ice, by rapid freezing, and imaged in electron microscopes at liquid nitrogen temperature, under low dose conditions to minimize the radiation damage. Sample images are obtained under near native conditions at the expense of low signal and low contrast in the recorded micrographs. Fortunately, the process of helical reconstruction has largely been automated, with the exception of indexing the helical diffraction pattern. Here, we describe an approach to index helical structure and determine helical symmetries (helical parameters) from digitized micrographs, an essential step for 3D helical reconstruction. Briefly, we obtain an initial 3D density map by applying the IHRSR method. This initial map is then iteratively refined by introducing constraints for the alignment parameters of each segment, thus controlling their degrees of freedom. Further improvement is achieved by correcting for the contrast transfer function (CTF) of the electron microscope (amplitude and phase correction) and by optimizing the helical symmetry of the assembly.  相似文献   

2.
The single-particle analysis is a structure-determining method for electron microscope (EM) images which does not require crystal. In this method, the projections are picked up and averaged by the images of similar Euler angles to improve the signal to noise ratio, and then create a 3-D reconstruction. The selection of a large number of particles from the cryo-EM micrographs is a pre-requisite for obtaining a high resolution. To pickup a low-contrast cryo-EM protein image, we have recently found that a three-layer pyramidal-type neural network is successful in detecting such a faint image, which had been difficult to detect by other methods. The connection weights between the input and hidden layers, which work as a matching filter, have revealed that they reflect characters of the particle projections in the training data. The images stored in terms of the connection weights were complex, more similar to the eigenimages which are created by the principal component analysis of the learning images rather than to the averages of the particle projections. When we set the initial learning weights according to the eigenimages in advance, the learning period was able to be shortened to less than half the time of the NN whose initial weights had been set randomly. Further, the pickup accuracy increased from 90 to 98%, and a combination of the matching filters were found to work as an integrated matching filter there. The integrated filters were amazingly similar to averaged projections and can be used directly as references for further two-dimensional averaging. Therefore, this research also presents a brand-new reference-free method for single-particle analysis.  相似文献   

3.
Single-particle analysis is a 3-D structure determining method using electron microscopy (EM). In this method, a large number of projections is required to create 3-D reconstruction. In order to enable completely automatic pickup without a matching template or a training data set, we established a brand-new method in which the frames to pickup particles are randomly shifted and rotated over the electron micrograph and, using the total average image of the framed images as an index, each frame reaches a particle. In this process, shifts are selected to increase the contrast of the average. By iterated shifts and further selection of the shifts, the frames are induced to shift so as to surround particles. In this algorithm, hundreds of frames are initially distributed randomly over the electron micrograph in which multi-particle images are dispersed. Starting with these frames, one of them is selected and shifted randomly, and acceptance or non-acceptance of its new position is judged using the simulated annealing (SA) method in which the contrast score of the total average image is adopted as an index. After iteration of this process, the position of each frame converges so as to surround a particle and the framed images are picked up. This method is the first unsupervised fully automatic particle picking method which is applicable to EM of various kinds of proteins, especially to low-contrasted cryo-EM protein images.  相似文献   

4.
Three-dimensional (3D) reconstruction in single-particle cryo-electron microscopy (cryo-EM) is a significant technique for recovering the 3D structure of proteins or other biological macromolecules from their two-dimensional (2D) noisy projection images taken from unknown random directions. Class averaging in single-particle cryo-EM is an important procedure for producing high-quality initial 3D structures, where image alignment is a fundamental step. In this paper, an efficient image alignment algorithm using 2D interpolation in the frequency domain of images is proposed to improve the estimation accuracy of alignment parameters of rotation angles and translational shifts between the two projection images, which can obtain subpixel and subangle accuracy. The proposed algorithm firstly uses the Fourier transform of two projection images to calculate a discrete cross-correlation matrix and then performs the 2D interpolation around the maximum value in the cross-correlation matrix. The alignment parameters are directly determined according to the position of the maximum value in the cross-correlation matrix after interpolation. Furthermore, the proposed image alignment algorithm and a spectral clustering algorithm are used to compute class averages for single-particle 3D reconstruction. The proposed image alignment algorithm is firstly tested on a Lena image and two cryo-EM datasets. Results show that the proposed image alignment algorithm can estimate the alignment parameters accurately and efficiently. The proposed method is also used to reconstruct preliminary 3D structures from a simulated cryo-EM dataset and a real cryo-EM dataset and to compare them with RELION. Experimental results show that the proposed method can obtain more high-quality class averages than RELION and can obtain higher reconstruction resolution than RELION even without iteration.  相似文献   

5.
We describe an algorithm for finding particle images in cryo-EM micrographs. The algorithm starts from a crude 3D map of the target particle, computed from a relatively small number of manually picked images, and then projects the map in many different directions to give synthetic 2D templates. The templates are clustered and averaged and then cross-correlated with the micrographs. A probabilistic model of the imaging process then scores cross-correlation peaks to produce the final picks. We give quantitative results on two quite different target particles: keyhole limpet hemocyanin and p97 AAA ATPase. On these particles our automatic particle picker shows human performance level, as measured by the Fourier shell correlations of 3D reconstructions.  相似文献   

6.
We here present TYSON, a new program for automatic and semi-automatic particle selection from electron micrographs. TYSON employs a three-step strategy of searching, sorting and selecting single particles. In the first step, TYSON finds the positions of potential particles by one of three different methods: local averaging, template matching or local variance. The practical merits and drawbacks of these methods are discussed. In the second step, these potential particles are automatically sorted according to their probability of being true positives. Many criteria are provided for this sort. In the final -interactive- step, whole categories of poorly fitting false positives can be removed with a single mouse-click. We present results obtained using cryo-EM micrographs of both spherical virus particles and asymmetric particles. The procedures are fast and use of TYSON allowed, for example, some 20,000 particles to be selected in a single working day.  相似文献   

7.
One of the major methodological challenges in single particle electron microscopy is obtaining initial reconstructions which represent the structural heterogeneity of the dataset. Random Conical Tilt and Orthogonal Tilt Reconstruction techniques in combination with 3D alignment and classification can be used to obtain initial low-resolution reconstructions which represent the full range of structural heterogeneity of the dataset. In order to achieve statistical significance, however, a large number of 3D reconstructions, and, in turn, a large number of tilted image pairs are required. The extraction of single particle tilted image pairs from micrographs can be tedious and time-consuming, as it requires intensive user input even for semi-automated approaches. To overcome the bottleneck of manual selection of a large number of tilt pairs, we developed an algorithm for the correlation of single particle images from tilted image pairs in a fully automated and user-independent manner. The algorithm reliably correlates correct pairs even from noisy micrographs. We further demonstrate the applicability of the algorithm by using it to obtain initial references both from negative stain and unstained cryo datasets.  相似文献   

8.
Random spherically constrained (RSC) single particle reconstruction is a method to obtain structures of membrane proteins embedded in lipid vesicles (liposomes). As in all single-particle cryo-EM methods, structure determination is greatly aided by reliable detection of protein “particles” in micrographs. After fitting and subtraction of the membrane density from a micrograph, normalized cross-correlation (NCC) and estimates of the particle signal amplitude are used to detect particles, using as references the projections of a 3D model. At each pixel position, the NCC is computed with only those references that are allowed by the geometric constraint of the particle’s embedding in the spherical vesicle membrane. We describe an efficient algorithm for computing this position-dependent correlation, and demonstrate its application to selection of membrane-protein particles, GluA2 glutamate receptors, which present very different views from different projection directions.  相似文献   

9.
Three-dimensional reconstruction of large macromolecules like viruses at resolutions below 10 A requires a large set of projection images. Several automatic and semi-automatic particle detection algorithms have been developed along the years. Here we present a general technique designed to automatically identify the projection images of particles. The method is based on Markov random field modelling of the projected images and involves a pre-processing of electron micrographs followed by image segmentation and post-processing. The image is modelled as a coupling of two fields--a Markovian and a non-Markovian. The Markovian field represents the segmented image. The micrograph is the non-Markovian field. The image segmentation step involves an estimation of coupling parameters and the maximum á posteriori estimate of the realization of the Markovian field i.e, segmented image. Unlike most current methods, no bootstrapping with an initial selection of particles is required.  相似文献   

10.
The single-particle reconstruction problem of electron cryo-microscopy (cryo-EM) is to find the three-dimensional structure of a macromolecule given its two-dimensional noisy projection images at unknown random directions. Ab initio estimates of the 3D structure are often obtained by the “Angular Reconstitution” method, in which a coordinate system is established from three projections, and the orientation of the particle giving rise to each image is deduced from common lines among the images. However, a reliable detection of common lines is difficult due to the low signal-to-noise ratio of the images. In this paper we describe a global self-correcting voting procedure in which all projection images participate to decide the identity of the consistent common lines. The algorithm determines which common line pairs were detected correctly and which are spurious. We show that the voting procedure succeeds at relatively low detection rates and that its performance improves as the number of projection images increases. We demonstrate the algorithm for both simulative and experimental images of the 50S ribosomal subunit.  相似文献   

11.
The bootstrap-based method for calculation of the 3D variance in cryo-EM maps reconstructed from sets of their projections was applied to a dataset of functional ribosomal complexes containing the Escherichia coli 70S ribosome, tRNAs, and elongation factor G (EF-G). The variance map revealed regions of high variability in the intersubunit space of the ribosome: in the locations of tRNAs, in the putative location of EF-G, and in the vicinity of the L1 protein. This result indicated heterogeneity of the dataset. A method of focused classification was put forward in order to sort out the projection data into approximately homogenous subsets. The method is based on the identification and localization of a region of high variance that a subsequent classification step can be focused on by the use of a 3D spherical mask. After initial classification, template volumes are created and are subsequently refined using a multireference 3D projection alignment procedure. In the application to the ribosome dataset, the two resulting structures were interpreted as resulting from ribosomal complexes with bound EF-G and an empty A site, or, alternatively, from complexes that had no EF-G bound but had both A and P sites occupied by tRNA. The proposed method of focused classification proved to be a successful tool in the analysis of the heterogeneous cryo-EM dataset. The associated calculation of the correlations within the density map confirmed the conformational variability of the complex, which could be interpreted in terms of the ribosomal elongation cycle.  相似文献   

12.
Three-dimensional reconstruction from electron micrographs requires the selection of many single-particle projection images; more than 10 000 are generally required to obtain 5- to 10-A structural resolution. Consequently, various automatic detection algorithms have been developed and successfully applied to large symmetric protein complexes. This paper presents a new automated particle recognition and pickup procedure based on the three-layer neural network that has a large application range than other automated procedures. Its use for both faint and noisy electron micrographs is demonstrated. The method requires only 200 selected particles as learning data and is able to detect images of proteins as small as 200 kDa.  相似文献   

13.
Template matching together with the comprehensive theory of image formation in electron microscope provides an optimal (in Bayesian sense) tool for solving one of the outstanding problems in single particle analysis, i.e., automatic selection of particle views from noisy micrograph fields. The method is based on the assumption that the reference three-dimensional structure is known and that the relevant parameters of the model of the image formation process can be estimated. In the first stage of the procedure, a set of possible particle views is generated using the available reference structure. The template images are constructed as linear combinations of available particle views using a clustering technique. Next, the micrograph noise characteristic is established using an automated contrast transfer function (CTF) estimation procedure. Finally, the CTF parameters calculated are used to construct a matched filter and correlation functions corresponding to the available template images are calculated. In order to alleviate the problem of the biased caused by varying image formation conditions, a decision making strategy based on the predicted distribution of correlation coefficients is proposed. It is demonstrated that due to the inclusion of CTF considerations, the template matching method performed very well in a broad range of microscopy conditions.  相似文献   

14.
The structure of thin three-dimensional crystals of the light-harvesting chlorophyll a/b protein complex, an integral membrane protein from the photosynthetic membrane of chloroplasts, has been determined at 7 A (1 A = 0.1 nm) resolution in projection. The structure analysis was carried out by image processing of low-dose electron micrographs, and electron diffraction of thin three-dimensional crystals preserved in tannin. The three-dimensional crystals appeared to be stacks of two-dimensional crystals having p321 symmetry. Results of the image analysis indicated that the crystals were disordered, due to random translational displacement of stacked layers. This was established by a translation search routine that used the low-resolution projection of a single layer as a reference. The reference map was derived from the symmetrized average of two images that showed features consistent with the projected structure of negatively stained two-dimensional crystals. The phase shift resulting from the displacement of each layer was corrected. Phase shifts were then refined by minimizing the phase residual, bringing all layers to the same phase origin. Refined phases from different images were in agreement and reliable to 7 A resolution. A projection map was generated from the averaged phases and electron diffraction amplitudes. The map showed that the complex was a trimer composed of three protein monomers related by 3-fold symmetry. The projected density within the protein monomer suggested membrane-spanning alpha-helices roughly perpendicular to the crystal plane. The density in the centre and on the periphery of the trimeric complex was lower than that of the protein, indicating that this region contained low-density matter, such as lipids and antenna chlorophylls.  相似文献   

15.
The 3D reconstruction of biological specimens using Electron Microscopy is currently capable of achieving subnanometer resolution. Unfortunately, this goal requires gathering tens of thousands of projection images that are frequently selected manually from micrographs. In this paper we introduce a new automatic particle selection that learns from the user which particles are of interest. The training phase is semi-supervised so that the user can correct the algorithm during picking and specifically identify incorrectly picked particles. By treating such errors specially, the algorithm attempts to minimize the number of false positives. We show that our algorithm is able to produce datasets with fewer wrongly selected particles than previously reported methods. Another advantage is that we avoid the need for an initial reference volume from which to generate picking projections by instead learning which particles to pick from the user. This package has been made publicly available in the open-source package Xmipp.  相似文献   

16.
In order to make a high resolution model of macromolecular structures from cryo-electron microscope (cryo-EM) raw images one has to be precise at every processing step from particle picking to 3D image reconstruction. In this paper we propose a collection of novel methods for filtering cryo-EM images and for automatic picking of particles. These methods have been developed for two cases: (1) when particles can be identified and (2) when particle are not distinguishable. The advantages of these methods are demonstrated in standard purified protein samples and to generalize them we do not use any ad hoc presumption of the geometry of the particle projections. We have also suggested a filtering method to increase the signal-to-noise (S/N) ratio which has proved to be useful for other levels of reconstruction, i.e., finding orientations and 3D model reconstruction.  相似文献   

17.
Single-particle cryo-electron microscopy (cryo-EM) is a technique that takes projection images of biomolecules frozen at cryogenic temperatures. A major advantage of this technique is its ability to image single biomolecules in heterogeneous conformations. While this poses a challenge for data analysis, recent algorithmic advances have enabled the recovery of heterogeneous conformations from the noisy imaging data. Here, we review methods for the reconstruction and heterogeneity analysis of cryo-EM images, ranging from linear-transformation-based methods to nonlinear deep generative models. We overview the dimensionality-reduction techniques used in heterogeneous 3D reconstruction methods and specify what information each method can infer from the data. Then, we review the methods that use cryo-EM images to estimate probability distributions over conformations in reduced subspaces or predefined by atomistic simulations. We conclude with the ongoing challenges for the cryo-EM community.  相似文献   

18.
The resolution in 3D reconstructions from tilt series is limited to the information below the first zero of the contrast transfer function unless the signal is corrected computationally. The restoration is usually based on the assumption of a linear space-invariant system and a linear relationship between object mass density and observed image contrast. The space-invariant model is no longer valid when applied to tilted micrographs because the defocus varies in a direction perpendicular to the tilt axis and with it the shape of the associated point spread function. In this paper, a method is presented for determining the defocus gradient in thin specimens such as sections and 2D crystals, and for restoration of the images subsequently used for 3D reconstruction. The alignment procedure for 3D reconstruction includes area matching and tilt geometry refinement. A map with limited resolution computed from uncorrected micrographs is compared to a volume computed from corrected micrographs with extended resolution.  相似文献   

19.
Single particle analysis (SPA) coupled with high-resolution electron cryo-microscopy is emerging as a powerful technique for the structure determination of membrane protein complexes and soluble macromolecular assemblies. Current estimates suggest that approximately 10(4)-10(5) particle projections are required to attain a 3A resolution 3D reconstruction (symmetry dependent). Selecting this number of molecular projections differing in size, shape and symmetry is a rate-limiting step for the automation of 3D image reconstruction. Here, we present Swarm(PS), a feature rich GUI based software package to manage large scale, semi-automated particle picking projects. The software provides cross-correlation and edge-detection algorithms. Algorithm-specific parameters are transparently and automatically determined through user interaction with the image, rather than by trial and error. Other features include multiple image handling (approximately 10(2)), local and global particle selection options, interactive image freezing, automatic particle centering, and full manual override to correct false positives and negatives. Swarm(PS) is user friendly, flexible, extensible, fast, and capable of exporting boxed out projection images, or particle coordinates, compatible with downstream image processing suites.  相似文献   

20.
Three-dimensional (3D) electron microscopy (3DEM) aims at the determination of the spatial distribution of the Coulomb potential of macromolecular complexes. The 3D reconstruction of a macromolecule using single-particle techniques involves thousands of 2D projections. One of the key parameters required to perform such a 3D reconstruction is the orientation of each projection image as well as its in-plane orientation. This information is unknown experimentally and must be determined using image-processing techniques. We propose the use of wavelets to match the experimental projections with those obtained from a reference 3D model. The wavelet decomposition of the projection images provides a framework for a multiscale matching algorithm in which speed and robustness to noise are gained. Furthermore, this multiresolution approach is combined with a novel orientation selection strategy. Results obtained from computer simulations as well as experimental data encourage the use of this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号