首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crop improvement in terms of yield is rarely linked to leaf photosynthesis. However, in certain crop plants such as rice, it is predicted that an increase in photosynthetic rate will be required to support future grain yield potential. In order to understand the relationships between yield improvement and leaf photosynthesis, controlled environment conditions were used to grow 10 varieties which were released from the International Rice Research Institute (IRRI) between 1966 and 1995 and one newly developed line. Two growth light intensities were used: high light (1500 micromol m(-2) s(-1)) and low light (300 micromol m(-2) s(-1)). Gas exchange, leaf protein, chlorophyll, and leaf morphology were measured in the ninth leaf on the main stem. A high level of variation was observed among high light-grown plants for light-saturated photosynthetic rate per unit leaf area (P(max)), stomatal conductance (g), content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), and total leaf protein content. Notably, between 1966 and 1980 there was a decline in P(max), g, leaf protein, chlorophyll, and Rubisco content. Values recovered in those varieties released after 1980. This striking trend coincides with a previous published observation that grain yield in IRRI varieties released prior to 1980 correlated with harvest index whereas that for those released after 1980 correlated with biomass. P(max) showed significant correlations with both g and Rubisco content. Large differences were observed between high light- and low light-grown plants (photoacclimation). The photoacclimation 'range' for P(max) correlated with P(max) in high light-grown plants. It is concluded that (i) leaf photosynthesis may be systematically affected by breeding strategy; (ii) P(max) is a useful target for yield improvements where yield is limited by biomass production rather than partitioning; and (iii) the capacity for photoacclimation is related to high P(max) values.  相似文献   

2.
Pentoxifylline increases erythrocyte flexibility, reduces blood viscosity, and inhibits platelet aggregation and is thus used in the treatment of peripheral vascular disease. It is transformed into at least seven phase I metabolites, of which two, M1 and M5, are active. The reduction of the keto group of pentoxifylline to a secondary alcohol in M1 takes place chiefly in erythrocytes, is rapidly reversible, and creates a chiral center. The aims of this study were: to develop HPLC methods to separate the enantiomers of M1, to investigate the kinetics of the reversible biotransformation of pentoxifylline to (R)- and (S)-M1 in hemolysed erythrocyte suspension, and to quantify the formation of the enantiomers of M1 (as well as M4 and M5) after intravenous and oral administration of pentoxifylline to human volunteers. (R)- and (S)-M1 could be separated preparatively on a cellobiohydrolase column, while determination in blood or plasma was by HPLC after chiral derivatization with diacetyl-L-tartaric acid anhydride. The metabolism of pentoxifylline to (R)-M1 in suspensions of hemolysed erythrocytes followed simple Michaelis-Menten kinetics (K(m) = 11 mM), while that to (S)-M1 was best described by a two-enzyme model (K(m) = 1.1 and 132 mM). Studies with inhibitors indicated that the enzymes were of the carbonyl reductase type. At a therapeutic blood concentration of pentoxifylline, the calculated rate of formation of (S)-M1 is 15 times higher than that of the (R)-enantiomer. Back-conversion of M1 to pentoxifylline was 3-4 times faster for the (S)- than for the (R)-enantiomer. In vivo, the R:S plasma concentration ratio of M1 ranged from 0.010-0.025 after intravenous infusion of 300 or 600 mg of pentoxifylline, and from 0.019-0.037 after oral administration of 600 mg. The biotransformation of pentoxifylline to M1 was thus highly stereoselective in favor of the (S)-enantiomer both in vitro and in vivo.  相似文献   

3.
In chickens, fasting results in increased plasma thyroxine (T(4)) levels and decreased plasma 3,5,3'-triiodothyronine (T(3)) levels. Refeeding, in turn, restores normal plasma T(3) and T(4) levels. The liver is an important tissue for the regulation of circulating thyroid hormone levels. Previous studies demonstrated that the increase in hepatic type III deiodinase in fasted chickens plays a role in the decrease of plasma T(3). Another factor that could be important is the level of T(4) and T(3) uptake by the liver. In mammals, caloric restriction is known to diminish transport of T(4) and T(3) into tissues. The present study examines whether this is also the case in chicken. Four-week-old chickens were subjected to a 24-h starvation period followed by refeeding. Blood and liver samples were collected at the start of refeeding and at different times of refeeding. Thyroid hormone levels were measured directly in plasma and in tissues following extraction. The results demonstrate that intrahepatic T(4) levels are increased and T(3) levels are decreased in fasted compared to ad libitum fed chickens. The parallel changes in plasma and hepatic T(3) and T(4) content demonstrate that T(4) availability in liver tissue is not diminished during fasting, suggesting that in chicken thyroid hormone uptake by the liver is not affected by nutritional status.  相似文献   

4.
The metabolism of N-nitrosodiethanolamine (NDELA) was studied to assess whether the formation of the beta-oxidated metabolites N-(2-hydroxyethyl)-N-(formylmethyl)nitrosamine (EFMN) and N-(2-hydroxyethyl)-N-(carboxymethyl)nitrosamine (ECMN) is involved in the mechanism of tumor induction in various animal species with different susceptibility to NDELA carcinogenicity. In vitro studies using liver S9 fractions from rats, hamster, B6C3F1 and CD-1 mice and rabbits showed that all the animal species metabolize NDELA through the beta-oxidation pathway, although to different extents. Urinary excretion of NDELA and its metabolite ECMN in rats, hamsters and mice after 5 mg X kg-1 NDELA i.p. confirmed these findings. The results suggest there is no correlation between carcinogenesis by NDELA and its beta-oxidation. The possibility that ECMN formation might represent a detoxifying metabolic pathway for NDELA is discussed.  相似文献   

5.
Nucleotide specificity in microtubule assembly in vitro   总被引:7,自引:0,他引:7  
A procedure is described for removing most of the GDP bound at the exchangeable GTP binding site (E site) of tubulin. Microtubule protein containing substoichiometric amounts of GDP at the E site is found to polymerize in response to: (a) two nonhydrolyzable ATP analogues, adenylyl imidodiphosphate (AMP-PNP) and adenylyl beta, gamma-methylenediphosphonate (AMP-PCP); and (b) substoichiometric levels of GTP or dGTP. The results are interpreted as suggesting that: (1) when GDP is removed from tubulin, the E site shows broad specificity for nucleoside triphosphates: (2) microtubule assembly can be induced by the binding of substoichiometric amounts of nucleoside triphosphate to the E site.  相似文献   

6.
Guanine (Gua) modification by nitrating and hydroxylating systems was investigated in DNA. In isolated calf thymus DNA, 8-NO(2)-Gua and 8-oxo-Gua were dose-dependently formed with peroxynitrite, and 8-NO(2)-Gua was released in substantial amounts. Myeloperoxidase (MPO) with H(2)O(2) and NO(2)(-) reacted with calf thymus DNA to form 8-NO(2)-Gua dose dependently without release of 8-NO(2)-Gua. The frequency of strand breaks was higher than the sum of 8-NO(2)-Gua and 8-oxo-Gua, particularly in the MPO-treated DNA, indicating the importance of other types of damage. The activation of human neutrophils and lymphocytes with phorbol ester did not induce 8-NO(2)-Gua and 8-oxo-Gua in their nuclear DNA. However, 8-NO(2)-Gua was found in calf thymus DNA co-incubated with activated neutrophils in the presence of NO(2)(-). No significant formation of 8-NO(2)-Gua was found in liver DNA from mice treated with Escherichia coli lipopolysaccharide. The incubation of peroxynitrite or MPO-H(2)O(2)-NO(2)(-)-treated DNA with formamidopyrimidine glycosylase (Fpg) released 8-oxo-Gua, but not 8-NO(2)-Gua, indicating that 8-NO(2)-Gua is not a substrate for Fpg. Although 8-NO(2)-Gua was generated in isolated DNA by different nitrating systems, other types of damage were formed in abundance, and the lesion could not be found reliably in nuclear DNA, suggesting that the biological importance is limited.  相似文献   

7.
Amyloid-beta peptides (Abeta), generated by proteolysis of the beta-amyloid precursor protein (APP) by beta- and gamma-secretases, play an important role in the pathogenesis of Alzheimer disease (AD). Inflammation is also believed to be integral to the pathogenesis of AD. Here we show that prostaglandin E(2) (PGE(2)), a strong inducer of inflammation, stimulates the production of Abeta in cultured human embryonic kidney (HEK) 293 or human neuroblastoma (SH-SY5Y) cells, both of which express a mutant type of APP. We have demonstrated using subtype-specific agonists that, of the four main subtypes of PGE(2) receptors (EP(1-4)), EP(4) receptors alone or EP(2) and EP(4) receptors together are responsible for this PGE(2)-stimulated production of Abeta in HEK293 or SH-SY5Y cells, respectively. An EP(4) receptor antagonist suppressed the PGE(2)-stimulated production of Abeta in HEK293 cells. This stimulation was accompanied by an increase in cellular cAMP levels, and an analogue of cAMP stimulated the production of Abeta, demonstrating that increases in the cellular level of cAMP are responsible for the PGE(2)-stimulated production of Abeta. Immunoblotting experiments and direct measurement of gamma-secretase activity suggested that PGE(2)-stimulated production of Abeta is mediated by activation ofgamma-secretase but not of beta-secretase. Transgenic mice expressing the mutant type of APP showed lower levels of Abeta in the brain, when they were crossed with mice lacking either EP(2) or EP(4) receptors, suggesting that PGE(2)-mediated activation of EP(2) and EP(4) receptors is involved in the production of Abeta in vivo and in the pathogenesis of AD.  相似文献   

8.
A compartmental model is developed for oxygen (O(2)) transport in brain microcirculation in the presence of blood substitutes (hemoglobin-based oxygen carriers). The cerebrovascular bed is represented as a series of vascular compartments, on the basis of diameters, surrounded by a tissue compartment. A mixture of red blood cells (RBC) and plasma/extracellular hemoglobin solution flows through the vascular bed from the arterioles through the capillaries to the venules. Oxygen is transported by convection in the vascular compartments and by diffusion in the surrounding tissue where it is utilized. Intravascular resistance and the diffusive loss of oxygen from the arterioles to the tissue are incorporated in the model. The model predicts that most of the O(2) transport occurs at the level of capillaries. Results computed from the present model in the presence of hemoglobin-based oxygen carriers are consistent with those obtained from the earlier validated model (Sharan et al., 1989, 1998a) on oxygen transport in brain circulation in the absence of extracellular hemoglobin. We have found that: (a) precapillary PO(2) gradients increase as PO(2) in the arterial blood increases, P(50 p) (oxygen tension at 50% saturation of hemoglobin with O(2) in plasma) decreases, i.e. O(2) affinity of the extracellular hemoglobin is increased, the flow rate of the mixture decreases, hematocrit decreases at constant flow, metabolic rate increases, and intravascular transport resistance in the arterioles is neglected; (b) precapillary PO(2) gradients are not sensitive to (i) intracapillary transport resistance, (ii) cooperativity (n(p)) of hemoglobin with oxygen in plasma, (iii) hemoglobin concentration in the plasma and (iv) hematocrit when accounting for viscosity variation in the flow; (c) tissue PO(2) is not sensitive to the variation of intravascular transport resistance in the arterioles. We also found that tissue PO(2) is a non-monotonic function of the Hill coefficient n(p) for the extracellular hemoglobin with a maximum occurring when n(p) equals the blood Hill coefficient. The results of the computations give estimates of the magnitudes of the increases in tissue PO(2) as arterial PO(2) increases,P(50 p) increases, flow rate increases, hematocrit increases, hemoglobin concentration in the plasma increases, metabolic rate decreases, the capillary mass transfer coefficient increases or the intracapillary transport resistance decreases.  相似文献   

9.
A strain of Neurospora crassa was isolated by training the mould to grow on media containing high concentrations of Co(2+). This strain, the Co(R) strain, exhibited approximately tenfold the resistance of the parent strain to Co(2+) and Ni(2+) but not to Zn(2+) or Cu(2+). Co(2+) toxicity in the Co(R) strain was reversed by Mg(2+) but not by Fe(3+). Also, Co(2+) did not affect iron metabolism in this strain. It is suggested that the mechanism of resistance in the Co(R) strain involves an alteration in the pattern of iron metabolism such that the latter is no longer adversely affected by toxic concentrations of Co(2+). The Co(R) strain is genetically stable and is most probably a result of a resistance mutation in N. crassa induced by Co(2+).  相似文献   

10.
Hou CX  Rintamäki E  Aro EM 《Biochemistry》2003,42(19):5828-5836
A freeze-thaw cycle of isolated thylakoids in darkness in the presence of ascorbate was employed as a novel experimental system to activate the light-harvesting complex (LHC) II kinase. Under these conditions ascorbate reduces Q(A), the primary quinone electron acceptor of photosystem (PS) II, and the subsequent reduction of plastoquinone and the cytochrome (cyt) b(6)f complex results in the activation of the LHCII kinase. Using this activation system, several facets of regulation of LHCII protein phosphorylation were unravelled. (i) Myxothiazol inhibited the activation of LHCII protein phosphorylation, thus being a potent inhibitor of electron flow not only in cyt bc complexes but in darkness also in cyt b(6)f complexes. (ii) Oxygen, the only electron acceptor in darkness, was required for LHCII kinase activation demonstrating that after a full reduction of the cyt b(6)f complex, an additional plastoquinol oxidation cycle in the quinol oxidation (Qo) site is required for LHCII kinase activation. (iii) In the absence of electron flow, when the intersystem electron carriers are reduced, the activated LHCII kinase has a half-life of 40 min, whereas the fully activated LHCII kinase becomes deactivated in a time scale of seconds upon oxidation of the cyt b(6)f complex, indicating that the kinase constantly reads the redox poise of the cyt b(6)f complex. (iv) The LHCII kinase is more tightly bound to the thylakoid membrane than the PS II core protein kinase(s). It is concluded that oxidation of plastoquinol at the Qo site of the reduced cyt b(6)f complex is required for LHCII kinase activation, while rapid reoccupation of the Qo site with plastoquinol is crucial for sustenance of the active state of the LHCII kinase.  相似文献   

11.
Hemodynamic consequences of rapid changes in posture in humans.   总被引:1,自引:0,他引:1  
Tolerance to +G(z) gravitational stress is reduced when +G(z) stress is preceded by exposure to hypogravity (fraction, 0, or negative G(z)). For example, there is an exaggerated fall in eye-level arterial pressure (ELAP) early on during +G(z) stress (head-up tilt; HUT) when this stress is immediately preceded by -G(z) stress (head-down tilt; HDT). The aims of the present study were to characterize the hemodynamic consequences of brief HDT on subsequent HUT and to test the hypothesis that an elevation in leg vascular conductance induced by -G(z) stress contributes to the exaggerated fall in ELAP. Young healthy subjects (n = 3 men and 4 women) were subjected to 30 s of 30 degrees HUT from a horizontal position and to 30 s of 30 degrees HUT when HUT was immediately preceded by 20 s of -15 degrees HDT. Four bouts of HDT-HUT were alternated between five bouts of HUT in a counterbalanced designed to minimize possible time effects of repeated exposure to gravitational stress. One minute was allowed for recovery between tilts. Brief exposure to HDT elicited an exaggerated fall in ELAP during the first seconds of the subsequent HUT (-17.9 +/- 1.4 mmHg) compared with HUT alone (-12.4 +/- 1.2 mmHg, P <0.05) despite a greater rise in stroke volume (Doppler ultrasound) and cardiac output over this brief time period in the HDT-HUT trials compared with the HUT trials (thereafter stroke volume fell under both conditions). The greater fall in ELAP was associated with an exaggerated increase in leg blood flow (femoral artery Doppler ultrasound) and was therefore largely (70%) attributable to an exaggerated rise in estimated leg vascular conductance, confirming our hypotheses. Thus brief exposure to -G(z) stress leads to an exaggerated fall in ELAP during subsequent HUT, owing to an exaggerated increase in estimated leg vascular conductance.  相似文献   

12.
Acetoacetate metabolism in infant and adult rat brain in vitro   总被引:24,自引:13,他引:11       下载免费PDF全文
1. Acetoacetate or dl-beta-hydroxybutyrate increases the rate of oxygen consumption to a smaller extent than that brought about by glucose or pyruvate in adult rat brain-cortex slices but to the same extent as that in infant rat brain-cortex slices. 2. The rate of (14)CO(2) evolution from [1-(14)C]glucose considerably exceeds that from [6-(14)C]glucose in respiring infant rat brain-cortex slices, in contrast with adult brain-cortex slices, suggesting that the hexose monophosphate shunt operates at a greater rate in the infant rat brain than in the adult rat brain. 3. The rate of (14)CO(2) evolution from [3-(14)C]acetoacetate or dl-beta-hydroxy[3-(14)C]butyrate, in the absence of glucose, is the same in infant rat brain slices as in adult rat brain slices. It exceeds that from [2-(14)C]glucose in infant rat brain but is less than that from [2-(14)C]glucose in adult rat brain. 4. Acetoacetate is oxidized in the brain through the operation of the citric acid cycle, as shown by the accelerating effect of glucose on acetoacetate oxidation in adult brain slices, by the inhibitory effects of malonate in both infant and adult brain slices and by its conversion into glutamate and related amino acids in both tissues. 5. Acetoacetate does not affect glucose utilization in adult or infant brain slices. It inhibits the rate of (14)CO(2) formation from [2-(14)C]glucose or [U-(14)C]-glucose the effect not being wholly due to isotopic dilution. 6. Acetoacetate inhibits non-competitively the oxidation of [1-(14)C]pyruvate, the effect being attributed to competition between acetyl-CoA and CoA for the pyruvate-oxidation system. 7. Acetoacetate increases the rate of aerobic formation of lactate from glucose with both adult and infant rat brain slices. 8. The presence of 0.1mm-2,4-dinitrophenol diminishes but does not abolish the rate of (14)CO(2) formation from [3-(14)C]acetoacetate in rat brain slices. This points to the participation of ATP in the process of oxidation of acetoacetate in infant or adult rat brain. 9. The presence of 5mm-d-glutamate inhibits the rate of (14)CO(2) formation from [3-(14)C]acetoacetate, in the presence or absence of glucose. 10. Labelled amino acids are formed from [3-(14)C]acetoacetate in both adult and infant rat brain-cortex slices, but the amounts are smaller than those found with [2-(14)C]glucose in adult rat brain and greater than those found with [2-(14)C]glucose in infant rat brain. 11. Acetoacetate is not as effective as glucose as a precursor of acetylcholine in adult rat brain but is as effective as glucose in infant rat brain slices. 12. Acetoacetate or beta-hydroxybutyrate is a more potent source of acetyl-CoA than is glucose in infant rat brain slices but is less so in adult rat brain slices.  相似文献   

13.
14.
Vitamin B(6) has an important role in the function of the human nervous system. Experimental data are not generally available on the role in human development, but significant conclusions may be made from studies of the effect of disorders of B(6) vitamer metabolism. Vitamin B(6) comprises seven compounds - pyridoxal, pyridoxine, pyridoxamine and their respective 5' phosphates. The common active form in human tissue is the 5'-phosphate form of pyridoxal (PLP) most of which is found in muscle bound to phosphorylase. Like many vitamins, B(6) can function both as a co-enzyme and as a chaperone. Pyridoxal-5'-phosphate is the metabolically active form and is involved in 100 enzymatic reactions including carbohydrate, amino acid, and fatty acid metabolism. There is evidence that in some situations B(6) vitamers can function as antioxidants. The fetus is dependent on the placenta for supply of vitamin B(6) and the demand correlates with amino acid metabolism. Few reports are available on the role of B(6) in embryogenesis. Studies of human disorders where B(6) metabolism is blocked show a major role in neurotransmitter function with secondary cerebral and cerebellar hypoplasia. Pyridoxine potentiates vitamin A teratogenicity and an excess leads to peripheral nerve cell degeneration. The key role of vitamin B(6) in the developing human is in metabolism, especially of the neurotransmitters.  相似文献   

15.
We studied the contractile response elicited by platelet-activating factor (PAF) administered intra-arterially into the tracheal circulation of 34 dogs in vivo. A method that avoided tachyphylaxis encountered in prior investigations was developed for isometric measurement of multiple dose-response effects. PAF was a very potent contractile agent; active tension was elicited with 10(-11) mol ia PAF. To determine the mechanism by which contraction was induced, dose-response curves were generated in groups of five animals each treated with either 0.5 mg/kg (approximately 1.5 X 10(-5) mol) iv + 10(-3) mg/kg (3 X 10(-8) mol) ia atropine, 5 mg/kg iv indomethacin (INDO), or 7.5 mg/kg iv hexamethonium (HEX). After pretreatment with atropine, contraction still was elicited with 10(-11) mol ia PAF. However, maximal contraction was only 16.2 +/- 2.74 g/cm (vs. 35.7 +/- 5.74 g/cm for untreated controls; P less than 0.02). The dose at which maximal contraction was elicited after atropine was 10(-7) mol ia (vs. 1.9 X 10(-9) mol for controls; P less than 0.001). Pretreatment with INDO caused minimal attenuation, and HEX had no effect on the response elicited by ia PAF. We demonstrate a method for assessing the effects of PAF in central airways that avoids tachyphylaxis and permits dose-response studies in the same animal. We also demonstrate that PAF is an extremely potent mediator that elicits tracheal smooth muscle contraction at least in part by postganglionic activation of parasympathetic nerves. A direct contractile effect of PAF which is not related to secretion of products of the cyclooxygenase pathway is also suggested.  相似文献   

16.
We investigated the transepithelial potential (TEP) and its responses to changes in the external medium in Alcolapia grahami, a small cichlid fish living in Lake Magadi, Kenya. Magadi water is extremely alkaline (pH = 9.92) and otherwise unusual: titratable alkalinity (290 mequiv L(-1), i.e. HCO(3) (-) and CO(3) (2-)) rather than Cl(-) (112 mmol L(-1)) represents the major anion matching Na(+) = 356 mmol L(-1), with very low concentrations of Ca(2+) and Mg(2+) (<1 mmol L(-1)). Immediately after fish capture, TEP was +4 mV (inside positive), but stabilized at +7 mV at 10-30 h post-capture when experiments were performed in Magadi water. Transfer to 250% Magadi water increased the TEP to +9.5 mV, and transfer to fresh water and deionized water decreased the TEP to -13 and -28 mV, respectively, effects which were not due to changes in pH or osmolality. The very negative TEP in deionized water was attenuated in a linear fashion by log elevations in [Ca(2+)]. Extreme cold (1 vs. 28°C) reduced the positive TEP in Magadi water by 60%, suggesting blockade of an electrogenic component, but did not alter the negative TEP in dilute solution. When fish were transferred to 350 mmol L(-1) solutions of NaHCO(3), NaCl, NaNO(3), or choline Cl, only the 350 mmol L(-1) NaHCO(3) solution sustained the TEP unchanged at +7 mV; in all others, the TEP fell. Furthermore, after transfer to 50, 10, and 2% dilutions of 350 mmol L(-1) NaHCO(3), the TEPs remained identical to those in comparable dilutions of Magadi water, whereas this did not occur with comparable dilutions of 350 mmol L(-1) NaCl-i.e. the fish behaves electrically as if living in an NaHCO(3) solution equimolar to Magadi water. We conclude that the TEP is largely a Na(+) diffusion potential attenuated by some permeability to anions. In Magadi water, the net electrochemical forces driving Na(+) inwards (+9.9 mV) and Cl(-) outwards (+3.4 mV) are small relative to the strong gradient driving HCO(3) (-) inwards (-82.7 mV). Estimated permeability ratios are P (Cl)/P (Na) = 0.51-0.68 and [Formula: see text] = 0.10-0.33. The low permeability to HCO(3) (-) is unusual, and reflects a unique adaptation to life in extreme alkalinity. Cl(-) is distributed close to Nernst equilibrium in Magadi water, so there is no need for lower P (Cl). The higher P (Na) likely facilitates Na(+) efflux through the paracellular pathway. The positive electrogenic component is probably due to active HCO(3) (-) excretion.  相似文献   

17.
With a binary response Y, the dose-response model under consideration is logistic in flavor with pr(Y=1 | D) = R (1+R)(-1), R = λ(0) + EAR D, where λ(0) is the baseline incidence rate and EAR is the excess absolute risk per gray. The calculated thyroid dose of a person i is expressed as Dimes=fiQi(mes)/Mi(mes). Here, Qi(mes) is the measured content of radioiodine in the thyroid gland of person i at time t(mes), Mi(mes) is the estimate of the thyroid mass, and f(i) is the normalizing multiplier. The Q(i) and M(i) are measured with multiplicative errors Vi(Q) and ViM, so that Qi(mes)=Qi(tr)Vi(Q) (this is classical measurement error model) and Mi(tr)=Mi(mes)Vi(M) (this is Berkson measurement error model). Here, Qi(tr) is the true content of radioactivity in the thyroid gland, and Mi(tr) is the true value of the thyroid mass. The error in f(i) is much smaller than the errors in ( Qi(mes), Mi(mes)) and ignored in the analysis. By means of Parametric Full Maximum Likelihood and Regression Calibration (under the assumption that the data set of true doses has lognormal distribution), Nonparametric Full Maximum Likelihood, Nonparametric Regression Calibration, and by properly tuned SIMEX method we study the influence of measurement errors in thyroid dose on the estimates of λ(0) and EAR. The simulation study is presented based on a real sample from the epidemiological studies. The doses were reconstructed in the framework of the Ukrainian-American project on the investigation of Post-Chernobyl thyroid cancers in Ukraine, and the underlying subpolulation was artificially enlarged in order to increase the statistical power. The true risk parameters were given by the values to earlier epidemiological studies, and then the binary response was simulated according to the dose-response model.  相似文献   

18.
Transport and metabolism of acetate in rat brain cortex in vitro   总被引:5,自引:4,他引:1  
1. [1-(14)C]Acetate undergoes metabolism when incubated aerobically at 37 degrees in the presence of rat brain-cortex slices, forming (14)CO(2) and (14)C-labelled amino acids (glutamate, glutamine, aspartate and relatively small quantities of gamma-aminobutyrate). In the absence of glucose the yield of (14)C-labelled aspartate exceeds that of (14)C-labelled glutamate and glutamine. The addition of glucose brings about a doubling of the rate of formation of (14)CO(2) and a greatly increased yield of (14)C-labelled glutamate or glutamine, whereas that of (14)C-labelled aspartate is diminished. 2. The addition of potassium chloride (100mm) to the incubation medium causes an increased rate of (14)CO(2) formation in the presence or absence of glucose and an increased rate of utilization of acetate. 3. The addition of 2,4-dinitrophenol (0.1mm) suppresses the rate of utilization of [1-(14)C]acetate. 4. The presence of ouabain (10mum) suppresses the rate of formation of (14)CO(2) from [1-(14)C]acetate and the rate of acetate utilization. Acetate conversion into carbon dioxide in the rat brain cortex is both Na(+)- and K(+)-dependent and controlled by operation of the active sodium-transport process. Only the Na(+)-stimulated rate is suppressed by ouabain. 5. Sodium fluoroacetate (1mm) decreases the rate of (14)CO(2) evolution from [1-(14)C]acetate in the presence of rat brain cortex without affecting the respiratory rate. The results are consistent with the conclusion that fluoroacetate competes with, or blocks, a transport carrier for acetate, so that in its presence only the passive diffusion rate of acetate takes place. 6. The presence of sodium propionate or sodium butyrate suppresses the utilization of [1-(14)C]acetate in rat brain cortex and leads to a concentration ratio (tissue/medium) of [1-(14)C]-acetate greater than unity. 7. The presence of NH(4) (+) diminishes acetate utilization, this being attributed to a diminished ATP concentration. Glycine is also inhibitory. It is concluded that acetate transport into the brain is carrier-mediated and dependent on the operation of the sodium pump.  相似文献   

19.
Endothelin (ET) is a recently discovered, endothelium-derived peptide that may be the most potent vasoconstrictor yet identified. Although there is much interest in the possible systemic actions of circulating ET in vivo, there is no data on ET levels under physiological conditions, or in cardiovascular disease. We used a radioimmunoassay that was sufficiently sensitive to detect ET immunoreactivity (irET) in the SepPak-extracted plasma from 14 healthy volunteers in a range from 0.03 to 0.69 pg/ml (mean 0.26 +/- 0.236 pg/ml). ET levels were not significantly different from normal in 5 patients with stable congestive heart failure (0.46 +/- 0.36 pg/ml). However, irET was increased markedly in 6 patients in cardiogenic shock (3.65 +/- 1.14 pg/ml), and (less so) in 6 patients on chronic dialysis (1.05 +/- 0.41) and in 4 with pulmonary hypertension (1.52 +/- 0.45) (p less than 0.001). The present results suggest that circulating irET concentration is responsive to altered cardiovascular conditions, and therefore support a potential role for ET as a vasoactive hormone.  相似文献   

20.
The relevance of the mean retention time (MRT) of particles through the gastrointestinal tract (GIT) is well understood and MRT(particle)GIT is an important parameter in digestion models. Solute markers have been used to estimate MRT(solute)GIT (or 'fluid passage') in animals, but the relevance of this measure is less evident and is usually sought in its relation to MRT(particle)GIT. The ratio between the two measures indicates the degree of 'digesta washing', with little washing occurring at ratios of 1, aborad washing at ratios >1 (where the solute marker travels faster than the particle marker), and orad (retrograde) washing at ratios <1 (where the solute marker travels slower than the particle marker). We analysed digesta washing in a dataset of 98 mammalian species including man of different digestion types (caecum, colon and nonruminant foregut fermenters, and ruminants), controlling for phylogeny; a subset of 72 species allowed testing for the influence of food intake level. The results indicate that MRT(solute)GIT and the degree of digesta washing are related to digestion type, whereas variation in MRT(particle)GIT is influenced mainly by effects of body mass and food intake. Thus, fluid throughput and digesta washing emerge as important correlates of digestive anatomy. Most importantly, primates appear constrained to little digesta washing compared to non-primate mammalian herbivores, regardless of their digestion type. These results may help explain the absence of primates from certain herbivore niches and represent a drastic example of a physiologic limitation in a phylogenetic group. More experimental research is required to illuminate relative benefits and costs of digesta washing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号